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Preface

The International Workshop on Hybrid Metaheuristics is now an established
event and reaches its fourth edition with HM 2007. One of the main motivations
for initiating it was the need for a forum to discuss specific aspects of hybridiza-
tion of metaheuristics. Hybrid metaheuristics design, development and testing
require a combination of skills and a sound methodology. In particular, com-
parisons among hybrid techniques and assessment of their performance have to
be supported by a sound experimental methodology, and one of the mainstream
issues of the workshop is to promote agreed standard experimental methodolo-
gies. These motivations are still among the driving forces behind the workshop
and, in these four years, we have observed an increasing attention to methodolog-
ical aspects, from both the empirical and theoretical sides. The papers selected
for presentation at HM 2007 are indeed a representative sample of research in
the field of hybrid metaheuristics. They range from methodological to applica-
tion papers. Moreover, some of them put special emphasis on the experimental
analysis and statistical assessment of results.

Among the publications in this selection, there are some that focus on the
integration of metaheuristics with mathematical programming, constraint sat-
isfaction or machine learning techniques. This interdisciplinary subject is now
widely recognized as one of the most effective approaches for tackling hard prob-
lems, and there is still room for new results. To achieve them, the community
needs to be open toward other research communities dealing with problem solv-
ing, such as those belonging to artificial intelligence (AI) and operations research
(OR).

We also note that the use of software libraries for implementing metaheuris-
tics is increasing, even though we have to observe that the users of a software
library are usually its developers, thus reducing the advantages in terms of
software design and development. We believe that this situation is going to
change in favor of a scenario in which some libraries will be used by most meta-
heuristic developers.

Finally, there are also some works describing applications of metaheuris-
tics in continuous optimization. The cross-fertilization between combinatorial
and continuous optimization is extremely important, especially because many
real-world problems can be naturally modeled as mixtures of discrete and con-
tinuous components.

It is already a tradition of the workshop to keep the acceptance rate of papers
relatively low: this makes it possible to publish official proceedings, which can
be taken as one of the main references in the field. Besides this, special care
is taken with respect to the reviewing process, during which the authors are
provided with constructive and detailed reviews. For this reason, the role of the
Program Committee members is crucial, and we are very grateful to them for the
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effort they made examining the papers and providing detailed reviews. Among
the 37 submissions received, 14 papers have been selected on the basis of the
Program Committee members’ suggestions. We are further grateful to Catherine
C. McGeoch and Thomas Stützle, who both accepted our invitation to give an
overview talk.

Looking back to the previous editions of the workshop, we observe a positive
trend concerning experimental methodology. Moreover, some topics, such as the
integration of metaheuristics with OR and AI techniques, have become estab-
lished themes. We believe that a grounded discipline in hybrid metaheuristics
could bring advantages in problem solving in many areas, such as constrained
optimization, mixed integer optimization and also stochastic and online prob-
lems, which are probably one of the new frontiers still to be fully explored.

August 2007 Thomas Bartz-Beielstein
Maŕıa J. Blesa

Christian Blum
Boris Naujoks

Andrea Roli
Günter Rudolph
Michael Sampels
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Marc Sevaux Université de Bretagne-Sud, France
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Evolutionary Local Search for the Super-Peer

Selection Problem and the p-Hub Median
Problem

Steffen Wolf and Peter Merz

Distributed Algorithms Group
University of Kaiserslautern, Germany
{pmerz,wolf}@informatik.uni-kl.de

Abstract. Scalability constitutes a key property in Peer-to-Peer envi-
ronments. One way to foster this property is the introduction of super-
peers, a concept which has gained widespread acceptance in recent years.
However, the problem of finding the set of super-peers that minimizes the
total communication cost is NP-hard. We present a new heuristic based
on Evolutionary Techniques and Local Search to solve this problem. Us-
ing actual Internet distance measurements, we demonstrate the savings
in total communication cost attainable by such a super-peer topology.
Our heuristic can also be applied to the more general Uncapacitated Sin-
gle Assignment p-Hub Median Problem. The Local Search is then fur-
ther enhanced by generalized don’t look bits. We show that our heuristic
is competitive with other heuristics even in this general problem, and
present new best solutions for the largest instances in the well known
Australia Post data set.

1 Introduction

During recent years evolutionary algorithms enhanced with local search have
been used to solve many NP-hard optimization problems [1,2,3,4]. These heuris-
tics take their power from the problem specific local search, while keeping all
favorable features of the evolutionary approach.

We are especially interested in optimization problems connected with topology
construction in Peer-to-Peer (P2P) systems. Well-known properties of these fully
decentralized P2P systems include self-organizing and fault-tolerant behavior.
In contrast to centralized systems, they usually possess neither a single point of
failure nor other bottlenecks that affect the entire network at once. However, the
scalability of such networks becomes an issue in the case of excessive growth:
Communication times tend to increase and the load put on every node grows
heavily when the networks get larger. A possible solution to this issue is the
introduction of super-peers. Super-peers are peers that act as servers for a number
of attached common peers, while at the same time, they form a network of equals
among themselves. In a super-peer enhanced P2P network, each common peer is
attached to exactly one super-peer, which constitutes its link to the remainder
of the network. All traffic will be routed via the super-peers [5,6].

T. Bartz-Beielstein et al. (Eds.): HM 2007, LNCS 4771, pp. 1–15, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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To ensure smooth operation, the peers generally wish to maintain low-delay
connections to the other peers. Hence, minimum communication cost is the aim
when designing super-peer P2P networks. In this paper, we present a heuristic
combining local search with evolutionary techniques for the Super-Peer Selection
Problem (SPSP), i. e. the problem of finding the set of super-peers and the
assignment of all other peers that minimizes the total communication cost.

Our special interest lies in the construction of these P2P overlay topologies.
However, the problem of selecting the super-peers is strongly related to a hub
location problem: the Uncapacitated Single Assignment p-Hub Median Problem
(USApHMP) [7]. The USApHMP is a well known optimization problem and has
received much attention in the last two decades. With minor adjustments, our
heuristic can also be used for the USApHMP, which allows the comparison with
other algorithms on established standard test cases.

This paper is organized as follows. In Section 2, we provide an overview of
related work. In Section 3, we propose our Super-Peer Selection Heuristic. In
Section 4, we present results from experiments on real world Internet data for
the Super-Peer Selection Problem, as well as on standard test cases for the
USApHMP, and compare the results with those of other recently published al-
gorithms. The paper concludes with an outline for future research in Section 5.

2 Related Work

The Super-Peer Selection Problem, as proposed here, has not yet been studied in
the literature. However, algorithms designed for the USApHMP can also be used
for SPSP. The USApHMP has achieved much attention since it was presented
by O’Kelly in [7], along with a set of test cases called CAB. Later, O’Kelly et al .
also presented means of computing lower bounds for these problems [8]. Exact
solutions have been computed by Ernst and Krishnamoorthy for problems with
up to 50 nodes in [9]. In this paper, they also introduced a new test set called
AP. Ebery presented two more efficient mixed integer linear programs (MILP)
for the special case of only 2 or 3 hubs [10], and thus solved a problem with
200 nodes (2 hubs), and a problem with 140 nodes (3 hubs). Also, the authors
of [9] presented a Simulated Annealing heuristic that found good solutions for
problems with up to 200 nodes.

Skorin-Kapov et al . presented TabuHub [11], a heuristic method based on
tabu search. Results were presented only for the smallest problems of the CAB
set (n ≤ 25). Also, neural network approaches have been proposed for the
USApHMP. In [12], the memory consumption and the CPU time for these ap-
proaches was reduced. However, the neural network approach was again only
applied to the smallest problems in the CAB set (n ≤ 15). Unfortunately, no
computation times are given, making comparisons with other heuristics difficult.

The most promising heuristic for the USApHMP so far has been presented
by Pérez et al . in [13]. It is a hybrid heuristic combining Path Relinking [14]
and Variable Neighborhood Search. The heuristic has proven to be very fast
with both the CAB and AP sets, faster than any other heuristic. However, it
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failed to find the optimum in some of the smaller CAB instances and still left
room for improvements in the larger instances of the AP set. The local search
neighborhoods used in this heuristic differ from the ones used here. Especially,
the most expensive neighborhood is missing in [13]. This explains the speed as
well as the loss of quality.

Two Genetic Algorithms have been presented by Kratica et al . [15]. These
GAs are based on different representations and genetic operations. Both feature
a mutation operator that favors the assignment of peers to closer super-peers,
as well as a sophisticated recombination. The results of the second GA are the
best results so far, as they improved the solutions for the larger AP instances
found in [13]. However, the approach does not include a local search, and can
still be improved. As far as we know, the heuristic we present in this paper is
the first heuristic combining evolutionary techniques with local search.

3 Super-Peer Selection

When constructing a communication cost efficient and load balanced P2P topol-
ogy we strive for a topology in which a subset of the nodes will function as
super-peers while the rest of the nodes, henceforth called edge peers, is each
assigned to one of the super-peers. Adhering to the established properties of
super-peer overlay structures, the super-peers are fully connected among them-
selves and are able to communicate directly with the edge peers assigned to them
and with their fellow super-peers. Essentially, the super-peers are forming the
core of the network. The edge peers, however, will need to route any communi-
cation via their assigned super-peer. An example of such a super-peer topology
is shown in Fig. 1. Using a topology of this kind, the communication between
edge peers p1 and p11 is routed via the super-peers c1 and c4. A broadcast in
such a topology can be efficiently performed by having one super-peer send the
broadcast to all other super-peers, which then forward the message to their re-
spective edge peers. To ensure smooth operation and to ease the load on each
peer, the number of super-peers should be limited as well as the number of peers
connected to a super-peer.

The Super-Peer Selection Problem can be defined as finding the super-peer
topology, i. e. the set of super-peers and the assignment of the edge peers to
the super-peers, with minimal total communication cost for a given network.
In a P2P setting, this cost can be thought of as the total all-pairs end-to-end
communication delay.

3.1 Background

The SPSP is NP-hard [16]. It may be cast as a special case of the Hub Location
Problem, first formulated by O’Kelly [7] as a Quadratic Integer Program. In the
Hub Location Problem, a number of nodes, the so-called hubs, assume hierar-
chical superiority over common nodes, a property equivalent to the super-peer
concept. Basically, given a network G = (V, E) with n = |V | nodes, p nodes
are to be selected as hubs. Let xik be a binary variable denoting that node i
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p1

p2

p3

p4

p5

p6

p7

p8p9p10
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p13

p14
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c2

c3c4

c5

Fig. 1. Example of a P2P network with selected Super-Peers

is assigned to node k if and only if xik = 1. If xkk = 1, node k is chosen as a
hub. The flow volume between any two nodes i �= j is equal to one unit of flow.
Since all flow is routed over the hubs, the actual weight on the inter-hub links is
usually larger than one. The transportation cost of one unit of flow on the direct
link between nodes i and j amounts to dij . Now, the SPSP formulated as a Hub
Location Problem is

min Z =
n∑

i=1

n∑

j=1,j �=i

n∑

k=1

n∑

m=1

(dik + dkm + dmj) · xik · xjm (1)

s. t.

xij ≤ xjj i, j = 1, . . . , n (2)
n∑

j=1

xij = 1 i = 1, . . . , n (3)

n∑

j=1

xjj = p (4)

xij ∈ {0, 1} i, j = 1, . . . , n (5)

Equation (1) yields the total communication cost Z. The set of constraints (2)
ensures that nodes are assigned only to hubs, while (3) enforces the allocation of
a node to exactly one hub. Due to constraint (4), there will be exactly p hubs.

A more general formulation uses a demand matrix W = (wij). Here, wij

denotes the flow from node i to j in flow units. Also, special discount factors
can be applied for the different edge types. Flow between hubs is subject to a
discount factor 0 ≤ α ≤ 1, flow from a node to its hub is multiplied by a factor
δ, and flow from a hub to a common node is multiplied by a factor χ. The total
communication cost Z is then:
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Z =
n∑

i=1

n∑

j=1

n∑

k=1

n∑

m=1

(χ · dik + α · dkm + δ · dmj) · wij · xik · xjm (6)

The distinction between the different types of edges is motivated by an appli-
cation in the area of mail transport. Here, the distribution cost differs from the
collection cost. Also, the transportation cost between the hubs is assumed to be
lower since more efficient means of transport can be used for the accumulated
amount of flow. This extension might also be applied in the case of communi-
cation networks, especially when asymmetric links are considered. However, the
most important difference from the SPSP is the introduction of demand factors
wij , as will be shown in Section 3.3.

Since the objective function in both programs is quadratic and nonconvex,
no efficient way to compute the minimum is known. The usual approach is to
transform the problem into a Mixed Integer Linear Program (MILP). A straight-
forward linearization uses O(n4) variables. We resort to an MILP formulation
using as few as O(n3) variables [17]:

min Z =
n∑

i=1

n∑

k=1

(χ ·Oi + δ ·Di) · dik · xik +
n∑

i=1

n∑

k=1

n∑

l=1

α · dkl · yikl (7)

s. t. (2), (3), (4), (5),

n∑

l=1

(yikl − yilk) = Oi · xik −
n∑

j=1

wij · xjk i, k = 1, . . . , n (8)

yikl ≥ 0 i, k, l = 1, . . . , n (9)

Here, Oi =
∑n

j=1 wij is the outgoing flow for node i and Dj =
∑n

i=1 wij is
the demand of node j. Both values can be calculated directly from the problem
instance. The variables yikl denote the flow volume from hub k to hub l which
has originated at peer i. Constraints (8) and (9) ensure flow conservation at each
node.

An MILP formulation for the SPSP can be derived by fixing χ = δ = α = 1,
wij = 1 for i �= j, wii = 0, and thus Oi = Di = n− 1:

min Z =
n∑

i=1

n∑

k=1

2 · (n− 1) · dik · xik +
n∑

i=1

n∑

k=1

n∑

l=1

dkl · yikl (10)

s. t. (2), (3), (4), (5), (9),

n∑

l=1

(yikl − yilk) = (n− 1) · xik −
n∑

j=1,j �=i

xjk i, k = 1, . . . , n (11)

The factor 2 · (n− 1) for the edge-peer to super-peer links in (10) is the number
of connections using this link. It is based on the assumption that every edge peer
needs to communicate with all other n − 1 peers, and all other peers need to
communicate with this edge peer.
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Initialization

Local Search

stop?

yes

Mutationno

s← Initialization(p)
s← LocalSearch(s)
β ← n
while ¬ stopping criterion do

for i = 1 . . . m do
si ←Mutation(β, s)
si ← LocalSearch(si)

end for
min = argmini{Z(si)}
if Z(smin) < Z(s) then

s← smin

else
β ← max{0.8 · β, 2}

end if
end while

Fig. 2. General overview of the Super-Peer Selection Heuristic

These formulations are equivalent to the quadratic formulation only if the
distances dij observe the triangle inequality. Otherwise, the model will generate
solutions featuring the property that messages are sent along shortest paths
between two hub instead of the intended direct link. The model can still be used
for such networks. However, the resulting value can only serve as a lower bound.

The formulation above enables the exact solution of moderately-sized prob-
lems (up to 50 peers) in reasonable time, and additionally, the computation of
lower bounds for larger networks (up to 150 peers) using its LP relaxation. For
networks larger than the given threshold, we use the lower bounds described in
[8]. Finally, the sum of all shortest paths’ weights yields another lower bound.

3.2 Super-Peer Selection Heuristic

The Super-Peer Selection Heuristic presented here is based on evolutionary algo-
rithms and local search. It operates on a global view of the network. The general
work flow is shown in Fig. 2. The heuristic is quite similar to iterated local search
[18], but uses more than one offspring solution in each generation.

Representation. A solution is represented by the assignment vector s. For
each peer i the value s(i) represents the super-peer of i: xi,s(i) = 1. All super-
peers, the set of which will be denoted by C, are assumed to be assigned to
themselves, i. e. ∀i ∈ C : s(i) = i. For the sake of swift computation, we also
store the current capacities of the super-peers, i. e. the number of peers connected
to the super-peer: |Vk| = |{i ∈ V | s(i) = k}|. This set also includes the super-
peer itself: k ∈ Vk. The sets Vk are not stored explicitly, but are defined by the
assignment vector s.

Initialization. The initial solution is created by randomly selecting p peers as
super-peers, and assigning all remaining peers to the nearest super-peer. When
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handling problems with missing links, this procedure is repeated if the initial set
of super-peers is not fully connected.

Local Search. After each step of the Evolutionary Algorithm a local search
is applied to further improve the current solution. We use three different neigh-
borhoods: replacing the super-peer, swapping two peers and reassigning a peer to
another super-peer. If a neighborhood does not yield an improvement, the next
neighborhood is used.

In the first neighborhood the local search tries to replace a super-peer by one
of its children. The former child becomes the new super-peer and every other
peer that was connected to the old super-peer is reconnected to the new super-
peer. The gain of such a move can be computed in O(n) time. The following
formula gives the gain for replacing super-peer k with i:

Greplace(i, k) =
∑

j∈C

2 · |Vk| · |Vj | · (dkj − dij) +
∑

j∈Vk

2 · (n− 1) · (dkj − dij) (12)

If the gain of this move is Greplace(i, k) > 0, the move is applied.
The second neighborhood tries to exchange the assignment of two peers. The

gain of such a move can be computed in O(1) time. Since all peers connected to
other super-peers are considered as the exchange partner, the total time com-
plexity for searching this neighborhood is O(n). Using the same notation as be-
fore, the following formula gives the gain for swapping the assignments of peers
i and j:

Gswap(i, j) = 2 · (n− 1) · (di,s(i) + dj,s(j) − di,s(j) − dj,s(i)) (13)

The move with the highest gain is applied if its gain is Gswap(i, j) > 0.
The third neighborhood covers the reassignment of a peer to another super-

peer. Here, it is important that the capacity limits of the involved super-peers
are observed. The gain of reassigning peer i to super-peer k can be calculated in
O(p) time:

Greassign(i, k) = 2 · (n− 1) · (di,s(i) − di,k)

+ 2 · (|Vs(i)| · |Vk| − (|Vs(i)| − 1) · (|Vk|+ 1)
) · ds(i),k

+ 2 ·
∑

j∈C\{k,s(i)}
|Vj | · (ds(i),j − dk,j) (14)

The first part of this equation gives the gain on the link between peer i and its
super-peer. The second part gives the gain on the link between the old and the
new super-peer. The third part gives the gain on all remaining intra-core links.
Out of all super-peers only the one with the highest gain is chosen, thus yielding
a total time complexity of O(p2). The move is applied only if the total gain is
Greassign(i, k) > 0.

These local search steps are performed for each peer i. The local search is
restarted whenever an improving step was found and applied. The local search
is thus repeated until no improvement for any peer i can be found, i. e. a local
optimum has been reached. Since all peers i ∈ V are considered in these moves,
the time complexity for searching the whole neighborhood is O(n2).
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Mutation. Since local search alone will get stuck in local optima, we use mu-
tation to continue the search. Mutation is done by swapping two random peers.
Again, the “gain” of such a swap can be computed by (13). Several mutation steps
are applied in each round. The number of mutations is adapted to the success rate.
The algorithm starts with β = n mutations. If no better solution is found in one
generation, the mutation rate β is reduced by 20 %. In each round at least two mu-
tations are applied. This way, the algorithm can adapt to the best mutation rate
for the individual problem and for the phase of the search. It is our experience that
it is favorable to search the whole search space in the beginning, but narrow the
search over time, thus gradually shifting exploration to exploitation.

Population. Our heuristic uses a population of only one individual. There is
no need for recombination. This is mainly motivated by the high computation
cost and solution quality of the local search. Using mutation and local search, m
offspring solutions are created. The best solution is used as the next generation
only if it yielded an improvement. This follows a (1 + m) selection paradigm. If
there was no improvement in the m children, the mutation rate β is reduced as
described before.

Stopping criterion. The heuristic is stopped after five consecutive generations
without an improvement. This value is a compromise between solution quality
and computation time. In the smaller instances the heuristic often finds the
optimum in the first or second generation. Continuing the search would mean to
waste time. We also stopped the heuristic after 40 generations regardless of recent
improvements. Both values were chosen based on preliminary experiments.

3.3 Adaptation for the USApHMP

The USApHMP introduces weights wij on the connections between the nodes.
While these weights have been equal for all node pairs in the Super-Peer Selection
Problem, this is no longer the case in the full USApHMP. The main effect on the
heuristic is that we can no longer summarize the flow on the inter-hub edges as
2 · |Va| · |Vb|. The following sum has to be used, instead:

∑
i∈Va

∑
j∈Vb

wij + wji.
This would change the time complexity for calculating the cost of an inter-hub
edge from O(1) to O(n2). With the use of efficient data structures, however, the
calculation for the cost of a move can be achieved in O(n) time.

Data structures. In addition to the super-peers’ capacities we also store the
weights on the p2 inter-hub links. WC(a, b) =

∑
i∈Va

∑
j∈Vb

wij denotes the
weight on the link from super-peer a to super-peer b. In each move made by
the local search or the mutation these weights are changed accordingly. Only
the selection of a new super-peer does not change these weights. Also, the gain
calculations have to be adapted:

Greplace(i, k) = α ·
∑

j∈C

(WC(j, k) + WC(k, j)) · (dkj − dij)

+
∑

j∈Vk

(χ ·Oj + δ ·Dj) · (dkj − dij) (15)
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Gswap(i, j) = α ·
∑

x∈V

(ds(j),s(x) − ds(i),s(x)) · (wjx − wix + wxj − wxi)

+ (χ ·Oj + δ ·Dj) · (dj,s(j) − dj,s(i))
+ (χ ·Oi + δ ·Di) · (di,s(i) − di,s(j))
− 2 · α · ds(i),s(j) · (wij − wii + wji − wjj) (16)

Greassign(i, k) = α ·
∑

x∈V

(ds(i),s(x) − dk,s(x)) · (wix + wxi)

+ (χ ·Oi + δ ·Di) · (di,s(i) − dik) + 2 · α · dk,s(i) · wii (17)

The time complexity of calculating the gains is still O(n) for replacing the super-
peer, but has increased to O(n) for swapping the assignments of two peers and
to O(n) for reassigning a peer to another super-peer. Using the same local search
as presented for the Super-Peer Selection Problem would mean to increase the
total time complexity. We therefore implemented a reduced version of the most
expensive local search: the swapping of two peers. Instead of calculating the gain
for swapping one peer with all other n− p− 1 peers, we only calculate this gain
for a random sample of p peers, which proved to be a good compromise between
computation time and solution quality.

Don’t look markers. To further speed up the computation we use don’t look
markers to guide the local search. These markers are a generalization of don’t look
bits, that have been applied successfully for example to the Traveling Salesman
Problem (TSP) [19]. In our algorithm, nodes that do not yield an improvement
during one step of the local search will be marked. Nodes that are marked twice
or more will not be checked in the following local search steps. However, if a
node is part of a successful move all marks are removed again. This can happen
if the node is the exchange partner of another node.

Using simple don’t look bits, i. e. disregarding all nodes with one or more
marks, leads to poor results, indeed. Here, too large parts of the considered
neighborhoods will be hidden from the local search. Trying to reduce the negative
impact of the don’t look bits immediately lead to the more general don’t look
markers.

4 Evaluation

We have performed several experiments to study the effectiveness of our heuris-
tic. For these experiments, we used real world node-to-node delay information
from PlanetLab [20], a world-wide platform for performing Internet measure-
ments. We used the round-trip times (RTT) from any host to any other host as
the communication cost for the edges in the overlay network. From the measure-
ments reported in [20] we used the first measurement for each month in 2005
(denoted by mm-2005). Those networks consist of n = 70 to n = 419 nodes.
Common properties of all those networks are the frequent triangle inequality
violations due to different routing policies and missing links most likely due to
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firewalls. We strive for p ≈ √n super-peers as a viable balance between low load
and administrative efficiency. Also, the number x of common peers assigned to
a super-peer is limited by 1

2 p ≤ x ≤ 2 p. This ensures that no super-peer suffers
from a high load, and that no peer is selected as super-peer without need.

For the USApHMP we used the CAB data set (Civil Aeronautics Board, up
to 25 nodes) from [7,21] and the AP data set (Australia Post, up to 200 nodes)
from [9]. Both data sets have been widely accepted as standard test cases, and
optima for all smaller instances are known. In the AP set the discount factors are
fixed to α = 0.75, χ = 3 and δ = 2. The CAB set fixes χ = δ = 1, but provides
instances for different α-values: 0.2, 0.4, 0.6, 0.8 and 1.0. When refering to the
individual instances in these sets, we will use the following notations: AP.n.p for
the AP instance with n nodes and p hubs, CAB.n.p.α for the CAB instance with
the corresponding configuration, and shorter CAB.n.p when α = 1.0.

For each problem instance the heuristic was started 30 times and average
values are shown. Computation times refer to a 2.8GHz Pentium4 with 512MB
RAM running Linux.

4.1 Lower Bounds

For networks too large to be handled with the models described in Section 3.1, we
are interested in computing lower bounds for SPSP. Table 1 contains the lower
bounds for the networks considered here. The all pairs shortest path lower bound
(APSP) yields the total communication cost (i. e. the sum of the distances of all
node pairs) when communication is routed over shortest paths only. Column
LB1 holds the lower bound defined in [8].

The column CPlex-LB holds an improved lower bound. We let CPlex 10.1 [22]
solve the SPSP and find lower bounds. For the smallest network 04-2005, CPlex
required eight days on a 3GHz PentiumD with 4GB RAM to arrive at a
gap of 1.55%. For network 01-2005, we stopped CPlex after it has consumed
three weeks of CPU time on the same machine. For all other networks, CPlex

Table 1. Different lower bounds for the considered networks

Network Size p APSP LB1 CPlex-LB

01-2005 127 12 2 447 260 2 501 413 2 632 988
02-2005 321 19 15 868 464 16 200 776
03-2005 324 18 17 164 734 17 580 646
04-2005 70 9 663 016 690 888 728 576
05-2005 374 20 17 324 082 17 794 876
06-2005 365 20 18 262 984 18 735 944
07-2005 380 20 24 867 734 25 337 991
08-2005 402 21 27 640 136 28 151 142
09-2005 419 21 23 195 568 23 646 759
10-2005 414 21 28 348 840 28 905 539
11-2005 407 21 23 694 130 24 196 510
12-2005 414 21 20 349 436 20 885 442
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Table 2. Best known solutions, their excess over the LB1 lower bound and the gain
compared to random configurations for the considered networks

Network Best known
Excess

Gain
over LB1

01-2005 2 929 830 17.1 % 3.8
02-2005 18 620 614 14.9 % 2.7
03-2005 20 715 716 17.8 % 2.7
04-2005 739 954 7.1 % 2.5
05-2005 25 717 036 44.5 % 2.8
06-2005 22 319 228 19.1 % 3.1
07-2005 31 049 398 22.5 % 3.2
08-2005 30 965 218 10.0 % 3.1
09-2005 33 039 868 39.7 % 3.2
10-2005 32 922 594 13.9 % 3.4
11-2005 27 902 552 15.3 % 3.3
12-2005 28 516 682 36.5 % 7.3

required an exceedingly long period of time, hence was unable to provide
viable results.

4.2 Results for the Super-Peer Selection Problem

In Table 2, the best solutions ever found by our heuristic are compared with the
lower bounds from the previous table. This also includes runs of the heuristic
with higher numbers of offspring and relaxed stopping criterion (500 offsprings,
1000 generations, different β adaptation, no stopping after five consecutive gener-
ations without improvement). There is still a considerable gap between the LB1
lower bounds and these best known solutions, ranging from 7.1% to 44.5%. We
believe these best known solutions to be close to the optimum, though, since the
LB1 lower bound is too low in instances with many triangle inequality violations.
In fact, the best known solutions for both 04-2005 and 01-2005 are still within
the lower and upper bounds found by CPlex.

The comparison of these best known solutions with unoptimized super-peer
topologies quantifies the benefit of optimization. The column Gain in Table 2
gives the quotient of an average random configuration’s cost to the best known
solution’s cost. Overlay topologies when constructed without locality awareness
can be assumed to be random. Accordingly, the communication cost in real world
networks becomes subject to reduction by a factor of 2.5 to 3.8 compared to
the unoptimized solution, and even the smallest network’s total communication
cost could still be successfully optimized by a factor of 2.5 compared to its
unoptimized counterpart. The high gain of 7.3 in network 12-2005 yields from
the large extent of triangle inequality violations in this network.

For the actual parameter settings as described in Section 3.2, Table 3 shows
the average excess over the best known solutions, the CPU times per run and the
success rate as the number of runs that found the best known solutions. These
results show that the heuristic is able to find solutions close to the best known
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Table 3. Average excess over best known solution and CPU times

Network
Excess over CPU time # best
best known per run found

01-2005 0.49 % 13.6 s 1/30
02-2005 0.72 % 241.8 s 1/30
03-2005 0.69 % 176.9 s 1/30
04-2005 0.38 % 1.5 s 2/30
05-2005 1.06 % 302.0 s 0/30
06-2005 0.55 % 275.7 s 1/30
07-2005 0.66 % 299.2 s 1/30
08-2005 1.00 % 286.6 s 0/30
09-2005 1.05 % 370.8 s 0/30
10-2005 1.06 % 384.4 s 0/30
11-2005 0.83 % 368.9 s 0/30
12-2005 0.78 % 353.8 s 1/30

solutions in all runs. The average excess is never higher than 1.1 %. Even with
the tight stopping criterion and the reduced number of offspring the heuristic
finds the best known solution in some cases. The CPU times depend on the size
of the network. The heuristic could be stopped earlier, but this would result in
worse solution quality.

Unfortunately, the results for the SPSP can not be directly compared to other
heuristics. However, with the more general USApHMP and established standard
test sets we can show that our heuristic is competitive with the algorithms
proposed in the literature.

4.3 Results for the USApHMP

Since the full USApHMP is more complex than the SPSP, we use the adapted
heuristic as described in Section 3.3 for these experiments. The AP set consists
of 20 smaller (n ≤ 50) and 8 larger instances (n ≥ 100). Optimal solutions are
known only for the smaller instances. The CAB set consists of 60 instances (four
different sizes up to 25 nodes, three different numbers of hubs, five different
discount factors α). For all these instances the optimum is known. Again, each
experiment was repeated 30 times.

In all 600 runs for the smaller instances of the AP set our heuristic reached
the known optimum. Only in six out of all 1800 runs with the CAB set the
optimum was not reached. Table 4 gives details on these runs. In all these cases
a less strict stopping criterion helps to reach the optimum again.

This very good solution quality can not be kept up on the larger instances of
the AP set. Only in 51 out of the 240 runs on these instances the best known
solution was reached. However, the average excess above those best known solu-
tions is still considerably good, as Table 5 shows. The best solutions known so
far for the larger instances of the AP set have been listed in [15]. Our heuristic
is able to reach these solutions in all but one problem (AP.200.20), while taking
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Table 4. Average excess above the optimum for the CAB set

Instance Excess over # optimum
n p α optimum found

15 2 0.6 0.038 % 29/30
15 3 1.0 0.044 % 28/30
20 4 1.0 0.004 % 28/30
25 4 1.0 0.040 % 29/30
all other — 30/30

Table 5. Average excess above the best known solutions for the AP set for n ≥ 100

Instance Excess over best # best Best known
costn p known solution found

100 5 0.00 % 30/30 136 929.444
100 10 0.30 % 5/30 106 469.566
100 15 0.75 % 1/30 90 533.523
100 20 1.62 % 1/30 80 270.962

200 5 0.16 % 11/30 140 062.647 improved
200 10 0.17 % 1/30 110 147.657
200 15 0.72 % 2/30 94 459.201 improved
200 20 1.35 % 0/30 85 129.343

Table 6. Average CPU times per run in seconds for the AP set

n p = 2 p = 3 p = 4 p = 5 p = 10 p = 15 p = 20

10 0.07 0.08 0.09 0.09
20 0.14 0.20 0.24 0.28
25 0.19 0.29 0.37 0.45
40 0.37 0.64 0.99 1.48
50 0.58 0.94 1.42 2.14
100 11.19 25.81 63.01 77.87
200 58.10 188.05 305.05 417.41

roughly the same CPU time as [15]. We have also found new best solutions for
two cases (AP.200.5 and AP.200.15). These new best solutions are marked in
Table 5. Our heuristic seems to be more effective in finding the best solutions
for problems with less hubs. For example the heuristic never failed to find the
best solution in AP.100.5 and also often finds the new best solution for AP.200.5.
For problems with more hubs the success rate decreases and the average excess
over the best known solution increases.

Also, since the search is more complex for problems with more hubs, the
average CPU time increases, as Table 6 shows. The computation times range
from less than a second for all smaller instances to about seven minutes for the
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largest one in the AP set. All computation times for the CAB set are well below
one second and seem independent on the intra-core discount factor α. The larger
the problem instance and the more hubs are to be located the more time the
heuristic uses. This behavior can also be observed for other heuristics and is
therefore not surprising.

5 Conclusion

We have presented a hybrid method combining evolutionary algorithms and local
search for the Super-Peer Selection Problem and the USApHMP. This heuristic
has proven to find optima in all smaller USApHMP instances. The heuristic uses
a more thorough search than previous algorithms, and so has found new best
solutions for two of the largest instances in the AP set (n = 200).

The time complexity improves when applying the heuristic to the Super-Peer
Selection Problem. Here, we are able to tackle problems with n = 400 and more
nodes within reasonable time. The results show that the heuristic is able to
optimize the total communication costs in unoptimized real world super-peer
topologies by a factor of about 3.

We are also working on a distributed algorithm to solve the SPSP using only
local view of the involved peers. First results are already promising. This algo-
rithm will be integrated into a middleware for Peer-to-Peer Desktop Computing.
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Abstract. This paper studies the Split Delivery Vehicle Routing prob-
lem (SDVRP), a variant of the VRP in which multiple visits to customers
are allowed. This NP-hard problem is solved by a recent metaheuris-
tic called Memetic Algorithm with Population Management or MA|PM
(Sörensen, 2003). It consists in a genetic algorithm, combined with a
local search procedure for intensification and a distance measure to con-
trol population diversity. Special moves dedicated to split deliveries are
introduced in the local search. This solution approach is evaluated and
compared with the tabu search algorithm of Archetti et al. (2006) and
with lower bounds designed by Belenguer et al. (2000). Our method out-
performs the tabu search both in solution quality and running time. On
a set of 49 instances, it improves the best-known solution 32 times. The
savings obtained confirm the interest and the power of the MA|PM.

Keywords: Split delivery vehicle routing problem, Memetic algorithm,
Distance measure.

1 Introduction and Literature Review

The Vehicle Routing Problem (VRP) is one of the most studied problem in
operations research. It consists of servicing customers with known demands,
using capacitated vehicles based at a depot-node, to minimize the total cost of
the routes. In 2002, Toth and Vigo edited a book entirely devoted to this problem
[23]. Today, the best exact method for the VRP is a branch-and-cut-and-price
developed by Fukasawa et al. [13]. Efficient metaheuristics for large instances,
including memetic algorithms like the one of Prins [18], are surveyed in a book
chapter by Cordeau et al. [7].

Contrary to the VRP, each customer may be visited several times in the Split
Delivery VRP (SDVRP). The studies on this problem are scarce and relatively
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recent, even if Dror and Trudeau [9,10] underlined in the 90’s that splitting can
improve both the routing cost and the number of vehicles. These authors proved
some properties of the optimal SDVRP solution and proposed a heuristic. Their
tests show that the savings become significant when the average demand per
customer exceeds 10% of vehicle capacity. A branch and bound algorithm was
developed later by Dror et al. [8], with several integer linear formulations and
reduced gaps between lower and upper bounds.

Belenguer et al. [4] presented a better lower bound for the SDVRP, based on a
polyhedral approach. They studied a new family of valid inequalities and solved
to optimality some instances of literature. We use this new bound to evaluate
our memetic algorithm.

In two recent papers, Archetti et al. analyse the conditions in which splitting
is interesting [3] and prove that the cost ratio VRP/SDVRP is 2 in the worst
case [2]. In [1], they present a tabu search procedure called SplitTabu, which
improves the results of Dror and Trudeau [10]. Some extensions of the SDVRP
have been investigated. For example, Mullaseril et al. [17] adapt a SDVRP res-
olution method for a split delivery arc routing problem met in livestock feed
distribution. Feillet et al. [11] and Frizzell and Griffin [12] study an SDVRP
with simple and multiple time windows.

In this paper, a memetic algorithm with population management or MA|PM
[21,22] is developed for the SDVRP. Section 2 states the problem and introduces
some notation. The main components and the global structure of the MA|PM are
described in section 3, while section 4 is devoted to computational evaluations.
A conclusion and some future directions close the paper.

2 Problem Statement

The SDVRP is defined on a complete weighted and undirected network G =
(N, E, C). N is a set of n + 1 nodes indexed from 0 onwards. Node 0 corre-
sponds to a depot with identical vehicles of capacity W . Each other node i,
i = 1, 2, . . . , n, has a known demand qi. The weight cij = cji on each edge
(i, j) of E is the travelling cost between nodes i and j. We assume that no de-
mand qi exceeds vehicle capacity W . Otherwise, for each customer i such that
qi > W , an amount of demand W can be deducted from qi to build one dedicated
trip with a full load, until the residual demand fits vehicle capacity, as shown
in [1].

Partial deliveries are allowed, so some customers (called split customers) can
be visited more than once. The objective is to determine a set of vehicle trips
of minimum total cost. Each trip starts and ends at the depot and supplies a
subset of customers. The number of trips or vehicles used is a decision vari-
able. It is assumed that the triangle inequality holds: in that case, solutions
in which each trip visits its customers only once dominate the others. In other
words, if one customer is visited several times, these visits are done by distinct
trips.
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3 MA|PM Components

3.1 General Principles of MA|PM

In combinatorial optimization, classical genetic algorithms (GA) are not agres-
sive enough, compared to other metaheuristics like tabu search. The memetic
algorithms (MA) proposed by Moscato [16] are more powerful versions, in which
intensification is performed by applying an improvement procedure (local search)
to new solutions. For some classical optimization problems, memetic algorithms
are currently the best solution methods. For instance, Prins designed for the
VRP one MA which outperforms most published metaheuristics [18].

The MA with population management or MA|PM was introduced by Sörensen
in his Ph.D. thesis [21] and recently published in a journal [22]. Like in any
incremental MA, starting from an initial population, each iteration selects two
parents, applies a crossover operator, improves the offspring using a local search
procedure and replaces some existing solutions by the offspring. However, the
mutation operator of traditional GAs and MAs is replaced in MA|PM by a
diversity control based on a distance measure in solution space.

More precisely, let d(B, C) be the distance between two solutions B and C
and, by extension, DP (C) = min{d(B, C) : B ∈ P} the distance between a new
solution C and a population P . C is accepted to replace one solution in P if
and only if DP (C) ≥ Δ, where Δ is a given diversity threshold which can be
adjusted during the search. In other words, new solutions enter the population
only if they differ enough from existing solutions, in terms of structure.

Sörensen recommends a systematic local search after crossovers. When DP (C)
< Δ, he suggests to apply a mutation operator until C is accepted, but the
resulting solution can be strongly degraded. Prins et al. prefer to discard the
child in that case, but then the local search rate must be limited to 20-50%
to avoid loosing too much time in unproductive iterations. They obtain better
results with this option on the Capacitated Arc Routing Problem (CARP) [19].

3.2 Chromosome and Evaluation

Like in the VRP MA of Prins [18], each solution is encoded as a list T of cus-
tomers, without trip delimiters. The list can be viewed as a TSP tour and a
procedure called Split is required to split it into trips to get a feasible SDVRP
solution and its cost. However, in the SDVRP, each customer may appear more
than once in T and a parallel list D is required to define the amounts delivered
for each visit. Figure 1 shows two examples for an instance with n = 6 cus-
tomers. No demand is split in the first chromosome, while customers 1, 3 and
6 are visited twice in the other. Note that the sum of the amounts delivered to
each customer must be equal to his demand, e.g., 1 + 4 = 5 for customer 3.
The procedure Split is easy to understand for the VRP, so we recall it first. An
auxiliary graph H = (X, A, Z) is constructed to describe all possible ways of
splitting the TSP tour T into trips compatible with vehicle capacity. X contains
n+1 nodes indexed from 0 onwards. A contains one arc (i−1, j) for each feasible
trip (sublist of customers) (Ti, Ti+1, · · · , Tj). The weight zi−1,j of arc (i − 1, j)
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Chromosome U without split demands

List of customer visits T : 5 3 6 2 1 4
Amounts delivered D : 9 5 7 4 8 6

Chromosome V with 3 split demands

List of customer visits T : 5 3 3 6 6 2 1 1 4
Amounts delivered D : 9 1 4 6 1 4 5 3 6

Fig. 1. Two examples of chromosomes with 6 customers

is the cost of the associated trip. The optimal splitting, subject to the sequence
imposed by T , is obtained by computing a shortest path from node 0 to node n
in H . Since H contains O(n2) arcs in the worst case, the shortest path can be
computed with the same complexity, using the version of Bellman’s algorithm
for directed acyclic graphs.

For the SDVRP, due to split demands, T may contain more than n customer
visits and a trip (Ti, Ti+1, . . . , Tj) may visit several times some customers, here
called split customers. Since the triangle inequality holds, the trip cost does
not increase if all visits except one are suppressed for each split customer. The
problem of setting the best possible cost on the arc which models the trip in H
is equivalent to removing superfluous visits to minimize the cost of the resulting
trip.

This problem is sometimes easy. For instance, if T contains a trip
(1, 5, 1, 3, 2, 1, 4), the only split customer is 1, and there are only three ways
of removing redundant visits: keep either the first, second or third occurrence.
However, for SDVRP solutions with a high splitting level, the length of T is not
bounded by a polynomial in n and the splitting procedure cannot be polynomial.
We decided to use a simple rule: for each split customer in a trip, we keep the
first visit and delete the other ones. Compared to the VRP the splitting is no
longer optimal but can still be implemented in O(n2). In fact, after some prelim-
inary tests, we realized that using this sub-optimal policy is not a real drawback:
in most cases, the local search of the MA is able to move each customer visited
by a vehicle to a better position in the trip.

3.3 Initial Population

The initial population P contains a fixed number nc of distinct chromosomes.
Two are built using VRP heuristics: the Clarke and Wright saving algorithm [6]
and the sweep heuristic of Gillett and Miller [15]. The saving algorithm starts
from a trivial solution, with one dedicated trip per customer. Then, it performs
successive mergers (concatenations of two trips) to reduce the total routing cost,
until additional mergers would violate vehicle capacity or increase total cost. In
the sweep heuristic, clusters of customers compatible with vehicle capacity are
generated by the rotation of a half-line centered on the depot. A vehicle route is
then computed in each cluster, by solving a traveling salesman problem.
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By construction, no demand is split in these two solutions. Each solution is
converted into a chromosome by concatenating its trips. When the average de-
mand per customer is important compared to vehicle capacity, the two resulting
chromosomes are often identical and, of course, only one is put in P . The nc− 2
or nc−1 other initial chromosomes are randomly generated as below, to include
a few split demands:

Step 1. Generate a random permutation S of the customers.

Step 2. Starting from its first customer, S is partitioned into successive trips
with a greedy heuristic. Each trip is completed when the vehicle gets full or if
adding one more customer would violate vehicle capacity. In the second case, the
customer is split to fill the vehicle completely and his remaining demand is used
to start a new trip. Hence, only the first and last customers of each trip may
be split in the resulting solution. Finally, the trips are concatenated to form the
chromosome.

In figure 1, assume that W = 10 and that the random permutation generated
in step 1 is the list T of chromosome U . The heuristic in step 2 extracts one full
trip (5,3), one full trip (3,6) in which customer 6 is split, one full trip (6,2,1) in
which 6 and 1 are split, and a residual trip (1,4). Once concatenated, these trips
yield chromosome V .

3.4 Selection and Crossover

In each MA iteration, the two parents A and B are chosen using the binary
tournament method: two solutions are randomly drawn in P and the best one
is taken for A. The same process is repeated to get B.

The recombination operator is a cyclic, one-point crossover designed for chro-
mosomes with different lengths. Only one child-solution C is generated. The cut-
point k is randomly drawn in the integer interval [1, min{|A|, |B|} − 1]. Child C
is initialized with the first k customers of A and their delivered amounts. The
child solution is completed by browsing circularly the second parent B, from

Chromosome A

Customers : 5 3 4 6 5 2 1 6 4 5
Demands : 3 5 1 3 5 4 8 4 5 1

Chromosome B

Customers : 4 1 6 2 5 3 4 1 2 5 6
Demands : 3 3 5 1 6 5 3 5 3 3 2

Chromosome C

Customers : 5 3 4 6 5 4 1 2 6 4 1 6 2
Demands : 3 5 1 3 6 3 5 3 2 2 3 2 1

Fig. 2. Example of crossover
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position k + 1 onwards. There are two cases when inspecting one customer i. If
his demand is already satisfied in C, we skip him. Otherwise, the customer is
appended to C and the quantity associated to this visit is eventually truncated
to guarantee that the total amount he receives in C does not exceed his demand
qi. Figure 2 depicts one example of crossover for 6 customers and k = 4.

3.5 Local Search

After each crossover, child C is evaluated and converted into an SDVRP solution,
using the Split procedure of 3.2. In this solution, recall that no customer is
visited several times by the same trip. The solution is then improved by the local
search and reconverted into a chromosome by concatenating its trips. Finally,
the distance test described in 3.6 is applied to know if the new chromosome
may be accepted. As explained in 3.1, too many children are rejected if the local
search is systematic. In practice, it is called with a fixed probability β < 1.

The first-improvement local search evaluates two groups of moves. The first
group does not split demands. The solution to be improved can be viewed as a
string with trips separated by copies of the depot node. In the first group, all
pairs (i, j) of nodes in this string are considered, even if they belong to distinct
trips, and the following moves are evaluated if vehicle capacity is respected. The
notation s(i) denotes the successor of customer i in his trip.

- move i or (i, s(i)) after j, if i and s(i) are customers.
- exchange i and j if they are customers.
- 2-opt moves in one trip: the subsequence from s(i) to j is inverted.
- 2-opt moves on two trips: edges (i, s(i)) and (j, s(j)) are removed and re-

placed either by (i, j) and (s(i), s(j)) or by (i, s(j)) and (j, s(i)).

These moves are classical for the VRP, but there is a modification for the SD-
VRP: if a customer i is visited by a trip and if a second visit to i is moved to
this trip, the amount transferred is aggregated with the first visit. This ensures
that all stops in a trip concern different customers.

The second group with three moves may split a customer or change the
amounts delivered to each visit. The first move is an improvement of the k-split
procedure of Dror and Trudeau [10] and used later by Archetti et al. [1]. This
procedure consists of removing one customer i from all his trips and to reinsert it
(possibly with splitting) into a given number of trips k, in order to decrease the
total routing cost. Note that the best insertion position in a trip is unique and
can be pre-computed. Following discussions with these authors, it appears that
they only evaluate insertions for small values of k, to avoid excessive running
times.

We found an optimal method for which k does not need to be fixed. Let S
be the set of trips in which i can be inserted (the vehicle is not full), aj the
residual capacity of trip j, uj the fixed cost if i is inserted into j, yj the amount
of demand inserted into j and xj a binary variable equal to 1 if trip j is used
for insertion. The optimal reinsertion corresponds to the following integer linear
program.
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min
∑

j∈S

ujxj (1)

∑

j∈S

yj = qi (2)

0 ≤ yj ≤ ajxj ∀j ∈ S (3)
xj ∈ {0, 1} ∀j ∈ S (4)

In fact, this ILP can be replaced by the 0-1 knapsack below. Indeed, constraints
(2) and (3) imply (6), the optimal solution x∗ of the knapsack problem tells us
which trips must be used, and the demand qi may be assigned as we wish to
these trips, e.g., using the very simple algorithm 1.

min
∑

j∈S

ujxj (5)

∑

j∈S

ajxj ≥ qi (6)

xj ∈ {0, 1} ∀j ∈ S (7)

The knapsack problem can be quickly solved in practice using dynamic pro-
gramming (DP) and the number of variables (trips) is often much smaller than
the number n of customers. We actually implemented the DP method and the
MA|PM running time increased by 30%, which is tolerable. However, we decided
to use the greedy heuristic in which insertions are done in increasing order of
uj/aj . This heuristic is known to solve optimally the dual of the continuous
relaxation of (5)-(7). It is much faster and optimal in 66% of cases for our in-
stances, and we observed no significant increase in the MA|PM final solution
cost, compared to the exact algorithm.

Algorithm 1. Insertion of i using the knapsack problem solution

1: repeat
2: j := arg min{up|p ∈ S ∧ x∗

p = 1 ∧ ap �= 0}
3: z := min{qj , aj}
4: Insert customer i in trip j, with an amount z
5: qi := qi − z; aj := aj + z
6: until qi = 0

The two last moves are new. The second one depicted in the upper part of
figure 3 exchanges two customers i and j pertaining to distinct trips and modify
their received amounts. Let R(i), p(i), s(i), and y(i) respectively denote the trip
containing one given visit to i, the predecessor and successor of i in this trip and
the amount received. If y(i) > y(j), j is removed with his amount from R(j)
and inserted before or after i in R(i) (the best position is selected). In parallel,
a copy of i with an amount y(i) − y(j) is created in R(j), to replace the visit
to j which has been moved. If y(i) < y(j), the move is analogous, except that
the roles of i and j are exchanged. The case y(i) = y(j) is ignored, since this is
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Fig. 3. Examples of splitting moves

a standard exchange already treated in the first group. Note that the new move
does not affect the load of the trips: in particular, it works on two full vehicles.

The third move is similar but i is swapped with a pair (j, k) of adjacent
customers, see the lower part of figure 3. If y(i) > y(j) + y(k), (j, k) is removed
from R(j) with its two amounts and inserted before or after i in R(i) (whichever
is the best), while a copy of i with a quantity y(i) − y(j) − y(k) is inserted at
the old location. If y(i) < y(j) + y(k), by convention, i and j are exchanged
without splitting but a copy of k is moved to R(i), with an amount y(j)+y(k)−
y(i). Finally, whenever y(i) = y(j) + y(k), a simple exchange of i with (j, k) is
performed.

3.6 Distance Measure

Campos et al. [5] proposed what they call the “distance for R-permutations”.
For two permutation chromosomes A and B, it is equal to the number of pairs
of adjacent customers in A which are broken (no longer adjacent) in B. An
adaptation of this distance is proposed here to handle SDVRP chromosomes A
and B with different lengths. In this case, the distance is the number of pairs
present in chromosomes A and not in B plus the number of pairs present in B
and not in A. Two n×n matrices MA and MB are used. For any chromosome X ,
MX

ij is equal to the number of pairs (i, j) of adjacent customers in X . Since we
have symmetric edge costs, a trip is equivalent to its reverse trip, i.e. performed
backward by the vehicle. To make our distance reversal-independent, MX is
symmetric, i.e. we set MX

ij = MX
ji = 1 if X contains the substring (i, j).

The distance is then defined as d(A, B) =
∑n

i=1

∑n
j=1 |MA

ij −MB
ij |/2. Figure 4

gives one example. The sum of the elements in matrix |A − B|, divided by
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Chromosome A Chromosome B
1 2 4 3 2 4 5 1 4 3 2 5 4

Matrix MA Matrix MB |MA −MB |
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0
2 1 0 1 2 0 2 0 0 1 0 1 2 1 0 0 2 1
3 0 1 0 1 0 3 0 1 0 1 0 3 0 0 0 0 0
4 0 2 1 0 1 4 1 0 1 0 1 4 1 2 0 0 0
5 0 0 0 1 0 5 0 1 0 1 0 5 0 1 0 0 0

Fig. 4. Example of distance measure

2, gives a distance equal to 5. The reason is that the pair (1, 2) and the two
pairs (2, 4) of A do not exist in B and the pairs (1, 4) and (2, 5) of B do not
exist in A. This metric is a generalization of the distance of Campos et al. It
is reversal-independent, i.e. d(A, B) = 0 if A = B or if B is the mirror of
A. Indeed, if no customer is split, our distance is equal to twice the one of
Campos.

3.7 Algorithm Overview

The general structure of the MA|PM can now be summarized in algorithm 2.
The initial population P includes the two good VRP solutions obtained with
the Clarke and Wright heuristic and the sweep heuristic. The distance measure
is used to avoid adding a solution S already in P , by checking that dP (S) �= 0.
The resulting population is sorted in ascending order of costs.

The main loop performs a fixed number of cycles, maxcycles and returns the
best solution P1 at the end. Each cycle initializes the diversity threshold Δ,
executes a given number of basic iterations maxcross and modifies the popu-
lation for the next cycle, using a partial renewal procedure. Each basic itera-
tion chooses two parents A and B using the binary tournament technique. The
resulting child C undergoes the local search with a given probability β. The
solution R to be replaced by C is pre-selected at random in the worst half
of P . C is accepted if its distance to P minus R is no smaller than Δ. Note
that R is not included in the test, because it will no longer be in P in case
of replacement. To avoid missing a new best solution, C is also accepted if it
improves the current best solution, i.e., if cost(C) < cost(P1). If C is accepted,
it replaces R and a simple shift is sufficient to keep P sorted. Otherwise C is
simply discarded. The distance threshold Δ is updated at the end of each basic
iteration.

A decreasing policy is used to vary Δ. Starting from an initial value Δmax, Δ
is linearly decrease to reach 1 (the minimum value to avoid duplicate solutions)
at the end of each cycle. The renewal procedure consists of keeping the best
solution and of replacing the others by new random solutions. Like in the initial
population, all solutions must be distinct.
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Algorithm 2. MA|PM overview

1: P ← ∅
2: initialize P1, P2 using the Clarke and Wright and Gillet and Miller heuristics
3: for k = 3 to nc do
4: repeat
5: S ← random solution()
6: until dP (S) ≥ 1
7: Pk ← S
8: end for
9: sort P in ascending cost order

10: for cycle = 1 to maxcycles do
11: initialize diversity threshold Δ
12: for cross = 1 to maxcross do
13: select two parent-solutions A and B in P using binary tournament
14: C ← crossover (A,B)
15: if random < β then
16: C ← local search(C)
17: end if
18: select R to be replaced in the worst half of P (P (�nc/2	) to P (nc))
19: if (DP\{R}(C) ≥ Δ) or (cost(C) < cost(P1)) then
20: remove solution R: P ← P \ {R}
21: add solution C: P ← P ∪ {C}
22: shift C to keep population P sorted
23: end if
24: update Δ
25: end for
26: P ← partial renewal(P )
27: end for
28: return the best solution (P1)

4 Computational Results

All algorithms designed in this paper were implemented in Delphi and executed
on a 3.0 GHz PC with Windows XP. Some preliminary testing was required
to tune the parameters, the objective being a good tradeoff between solution
quality and running time. The best results on average were achieved using a
population size nc = 10, four cycles of 2000 crossovers each (maxcycles = 4 and
maxcross = 2000, and a local search rate β = 0.1. The diversity threshold Δ is
initialized with a Δmax equal to one quarter of the average inter-solution distance
calculated on the initial population. Δ is then decreased by (Δmax−1)/maxcross
after each crossover. The tuning seems robust, since it gives very good results
on the three sets of instances tested.

The MA|PM was first compared with the tabu search SplitTabu of Archetti
et al. [1], using the same instances. These instances are derived from the VRP
files 1 to 5, 11 and 12 used by Gendreau et al. [14]. They contain 50 to 199
customers. The demands qi were regenerated randomly for each instance, using
six different intervals with respect to vehicle capacity W : [0.01W , 0.1W ], [0.1W ,
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Table 1. Computational results of the SDVRP instances of Archetti

SplitTabu MA|PM
File Demand Cost Time Cost Time Saving Best
p1-50 5 335 535 13 5 246 111 8.53 1.68 5 246 111
p2-75 8 495 410 36 8 238 883 35.72 3.02 8 238 883
p3-100 8 356 191 58 8 294 397 34.59 0.74 8 273 926
p4-150 10 698 369 389 10 423 740 103.69 2.57 10 254 927
p5-199 13 428 515 386 13 115 937 353.84 2.33 12 929 951
p6-120 10 560 148 38 10 412 000 50.92 1.40 10 378 753
p7-100 8 253 184 49 8 195 575 42.89 0.70 8 195 575

p1-50 0.01-0.1 4 637 571 5 4 607 896 12.38 0.64 4 607 896
p2-75 0.01-0.1 6 052 376 13 6 000 642 18.75 0.85 5 962 499
p3-100 0.01-0.1 7 522 012 31 7 268 076 37.12 3.38 7 268 076
p4-150 0.01-0.1 8 909 533 73 8 756 127 100.27 1.72 8 663 116
p5-199 0.01-0.1 10 562 679 526 10 187 055 356.22 3.56 10 183 801
p6-120 0.01-0.1 10 846 959 42 9 765 688 72.98 9.97 9 765 688
p7-100 0.01-0.1 6 487 359 58 6 497 338 34.97 -0.15 6 345 694

p1-50 0.1-0.3 7 614 021 22 7 514 139 10.22 1.31 7 410 562
p2-75 0.1-0.3 10 953 225 45 10 744 585 34.14 1.90 10 678 012
p3-100 0.1-0.3 14 248 114 96 13 928 469 78.06 2.24 13 772 801
p4-150 0.1-0.3 19 182 459 393 18 787 090 147.89 2.06 18 750 888
p5-199 0.1-0.3 23 841 545 755 23 401 362 347.14 1.85 23 293 715
p6-120 0.1-0.3 29 187 092 143 27 203 752 144.19 6.80 27 203 534
p7-100 0.1-0.3 14 620 077 146 14 172 757 43.27 3.06 14 157 818

p1-50 0.1-0.5 10 086 663 28 9 883 062 12.49 2.02 9 883 062
p2-75 0.1-0.5 14 436 243 123 14 137 965 37.38 2.07 13 985 257
p3-100 0.1-0.5 18 947 210 136 18 452 995 28.39 2.61 18 276 498
p4-150 0.1-0.5 26 327 126 739 25 616 472 224.89 2.70 25 397 546
p5-199 0.1-0.5 32 844 723 2 668 31 912 475 436.20 2.84 31 802 981
p6-120 0.1-0.5 42 061 210 268 39 343 880 163.14 6.46 39 343 880
p7-100 0.1-0.5 20 299 948 293 19 945 947 51.31 1.74 19 815 453∗

p1-50 0.1-0.9 14 699 221 61 14 670 635 21.42 0.19 14 438 367∗

p2-75 0.1-0.9 21 244 269 193 21 025 762 46.11 1.03 20 872 242
p3-100 0.1-0.9 27 940 774 649 27 809 492 84.38 0.47 27 467 515∗

p4-150 0.1-0.9 39 097 249 2 278 40 458 715 244.91 -3.48 38 497 320∗

p5-199 0.1-0.9 48 538 254 3 297 49 412 170 725.69 -1.80 47 374 671∗

p6-120 0.1-0.9 65 839 735 878 63 183 734 196.14 4.03 62 596 720∗

p7-100 0.1-0.9 31 015 273 260 31 137 187 52.13 -0.39 30 105 041∗

p1-50 0.3-0.7 14 969 009 49 14 770 135 24.53 1.33 14 770 135
p2-75 0.3-0.7 21 605 050 129 21 321 601 51.78 1.31 21 321 601
p3-100 0.3-0.7 28 704 954 810 28 588 684 100.16 0.41 27 642 538∗

p4-150 0.3-0.7 40 396 994 3 008 40 458 715 244.86 -0.15 39 671 062∗

p5-199 0.3-0.7 51 028 379 3 566 51 553 604 749.94 -1.03 50 014 512∗

p6-120 0.3-0.7 66 395 522 659 64 247 101 271.39 3.24 63 994 197
p7-100 0.3-0.7 30 380 225 778 31 556 915 91.31 -3.87 28 821 235∗

p1-50 0.7-0.9 21 652 085 106 21 543 510 22.91 0.50 21 483 778∗

p2-75 0.7-0.9 31 806 415 869 32 003 533 27.48 -0.62 31 381 780∗

p3-100 0.7-0.9 43 023 114 1 398 43 129 461 55.75 -0.25 42 788 332∗

p4-150 0.7-0.9 61 963 577 10 223 62 674 827 401.62 -1.15 60 998 678∗

p5-199 0.7-0.9 79 446 339 21 849 80 815 768 571.70 -1.72 76 761 141∗

p6-120 0.7-0.9 103 040 778 1 826 100 634 739 298.08 2.34 100 174 729
p7-100 0.7-0.9 48 677 857 1 004 49 194 826 180.11 -1.06 47 735 921∗

0.3W ], [0.1W , 0.5W ], [0.1W ,0.9W ], [0.3W , 0.7W ] and [0.7W , 0.9W ]. Including
the original instances for which the demands are not changed, the 49 instances
listed in Table 1 are obtained. The first group of 7 instances contains the original
demands.
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The four first columns correspond respectively to the file name with the num-
ber n of customers, the interval of demands, the average solution cost found by
SplitTabu over 5 runs (using different random initial solutions) and the average
running time per run in seconds. SplitTabu was implemented in C++ on a 2.4
GHz PC. The MA|PM solution value and running time (for one run and the
standard setting of parameters) are given in columns 5 and 6. The last but one
column indicates the saving in % obtained by our method, computed using the
following formula:

Saving =
SplitTabu cost−MA|PM cost

SplitTabu cost
× 100

The last column Best gives the new best-known solution values, found either
by the tabu search (indicated by an asterisk) or by the MA|PM, when different
settings of parameters can be used.

Using one single run, our algorithm improves 37 out of the 49 instances, while
being faster than SplitTabu for 42. All instances with demands not greater than
W/2 are improved, except one. The saving for these instances varies between
0.64% and 9.97%. Only instance p7-100 with demands in [0.01W , 0.1W ] is not
improved, but the loss is marginal (-0.15%). Concerning the other instances, in
which some demands may exceed W/2, 10 out of 21 are improved. Moreover,
MA|PM is much faster than SplitTabu on these instances and, when the tabu
search is the best, the deviation exceeds 3% only twice: for p4-150 and demands
in [0.1W ,0.9W ] and p7-100 with demands in [0.3W ,0.7W ]. Concerning best-
known solutions, 32 are obtained using MA|PM versus 17 for SplitTabu.

The second evaluation was conducted with 25 instances used by Belenguer at
al. [4], downloadable at http://www.uv.es/∼belengue/SDVRP/sdvrplib.html.
11 are VRP instances from the TSPLIB [20], the other 14 are randomly generated.
The number in the file names denotes the total number of vertices (customers
plus depot). For the random instances, the coordinates come from the TSPLIB
instances eil51, eil76 and eil101. The demands were randomly generated with

Table 2. Results for TSPLIB instances

MA|PM
File UB LB Cost Time MA/LB UB/LB MA Best

eil22 375 375.00 375 4.11 0.00 0.00 375
eil23 569 569.00 569 5.47 0.00 0.00 569
eil30 510 508.00 503 5.70 -0.98 0.39 503
eil33 835 833.00 835 5.19 0.24 0.24 835
eil51 521 511.57 521 7.28 1.81 1.81 521
eilA76 832 782.70 828 35.94 5.79 6.30 818
eilB76 1 023 937.47 1 019 13.09 8.70 9.12 1 007
eilC76 735 706.01 738 14.75 4.53 4.11 733
eilD76 683 659.43 682 23.12 3.42 3.57 682
eilA101 817 793.48 818 25.25 3.09 2.96 815
eilB101 1 077 1 005.85 1 082 21.81 7.57 7.03 1 007

Average 3.10 3.23
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different intervals, as in Archetti et al. [1]. In the names of the randomly gener-
ated instances in Table 3, the code Dx corresponds to the interval used: D1 for
[�0.01W	, 
0.1W�], D2 for [�0.1W	, 
0.3W�], D3 for [�0.1W	, 
0.5W�], D4 for
[�0.1W	, 
0.9W�], D5 for [�0.3W	, 
0.7W�] and D6 for [�0.7W	, 
0.9W�].

Table 2 gives the results obtained for the 11 VRP instances from the TSPLIB.
The first column mentions the file name of each instance, the second and third
give an upper bound (UB) and a lower bound (LB) obtained by Belenguer et
al. using a heuristic method and a cutting plane algorithm. Columns 4 and 5
indicate the solution cost and running time in seconds achieved by our algorithm
with the standard setting of parameters. Column 6 provides the deviation of our
method to the lower bound in %, while the gap UB/LB achieved by Belenguer et
al. is given in column 7 for comparison. The last column gives the best MA|PM
solution found when parameters may be modified.

The average deviation to the lower bound is only slightly improved (around
3%), but the MA retrieves the two optima found by Belenguer et al., improves 4
instances and obtains the same results for two others. Belenguer et al. have a better
solution for 3 instances only. Here, the MA|PM is quite fast, with 36 seconds in
the worst case. For the instance eil30, the result obtained is better than the LB.
This is due to the method used to compute this lower bound which considers the
minimum number of vehicles. For the instance eil30, the MA|PM uses one more
vehicle than the LB. This result does not put the comparison to LB in jeopardy
because the MA|PM finds the same number of vehicles for all remaining instances.

The comparison with the instances randomly generated by Belenguer et al. is
given in Table 3. The same table format is used. For these instances, the average
gap UB/LB is significantly impoved by the MA: 4.97% versus 8.63%. 13 out of
14 instances are improved and the MA is still reasonably fast, with 50 seconds
in the worst case.

Table 3. Results for the random SDVRP instances of Belenguer

MA|PM
File UB LB Cost Time MA/LB UB/LB MA Best

S51D1 458 454.00 458 8.77 0.88 0.88 458
S51D2 726 676.63 707 7.44 4.48 7.30 706
S51D3 972 905.22 945 7.84 4.39 7.38 945
S51D4 1 677 1 520.67 1 578 11.98 3.77 10.28 1 578
S51D5 1 440 1 272.86 1 351 16.72 6.14 13.13 1 336
S51D6 2 327 2 113.03 2 182 9.92 3.26 10.12 2 177
S76D1 594 584.87 592 15.23 1.21 1.56 592
S76D2 1 147 1 020.32 1 089 30.50 6.73 12.41 1 087
S76D3 1 474 1 346.29 1 427 12.89 5.99 9.49 1 420
S76D4 2 257 2 011.64 2 117 8.76 5.24 12.15 2 094
S101D1 716 700.56 717 49.75 2.35 2.20 716
S101D2 1 393 1 270.97 1 372 31.72 7.95 9.60 1 372
S101D3 1 975 1 739.66 1 891 33.98 8.70 13.53 1 891
S101D5 2 915 2 630.43 2854 18.66 8.50 10.82 2 854

Average 4.97 8.63
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5 Conclusion and Future Directions

In this paper, the very recent MA|PM framework is applied to the very hard Split
Delivery VRP. This requires the design of non-trivial components: an ad-hoc
encoding, a crossover operator, an effective local search able to split customers
and a distance adapted to chromosomes with varying lengths.

A comparison with Archetti et al. indicates that the proposed algorithm com-
petes with a state of the art tabu search method, while being much faster. The
lower bounds available for Belenguer’s instances show that solution gaps can be
reduced, especially for the randomly generated instances.

Future possible research directions include the design of more effective moves
when the average demand represents a large fraction of vehicle capacity, in or-
der to improve the instances which resist. We also intend to tackle additional
constraints like time windows. The study of stochastic demands seems very in-
teresting, because demand variations could have a strong impact on a planned
solution with split customers. Finally, the deviations to lower bounds are mod-
erate but more important than the typical gaps reachable for the VRP. This
raises the need for tighter bounds.
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Abstract. We present two hybrid Metaheuristics, a hybrid Iterated
Local Search and a hybrid Simulated Annealing, for solving real-world
extensions of the Vehicle Routing Problem with Time Windows. Both
hybrid Metaheuristics are based on the same neighborhood generating
operators and local search procedures. The initial solutions are obtained
by the Coefficient Weighted Distance Time Heuristics with automated
parameter tuning. The strategies are compared in an empirical study
on four real-world problems. A performance measure is used that also
considers multiple restarts of the algorithms.

Keywords: Vehicle Routing Problems with Time Windows, Coefficient
Weighted Distance Time Heuristics, Iterated Local Search, Simulated
Annealing.

1 Introduction

The Vehicle Routing Problem (VRP) is defined by the task of finding optimal
routes used by a group of vehicles when serving a group of customers. The
solution of the problem is a set of routes which all begin and end in the depot,
and which suffices the constraint that all the customers are served only once.
The objective is to minimize the overall transportation cost. Transportation cost
can be improved by reducing the total traveled distance and by reducing the
number of the needed vehicles. By adding only capacity constraints to the VRP
problem, it is transformed into the most common variation, the Capacitated
Vehicle Routing Problem (CVRP). By adding time constraints to the CVRP
in the sense that each customer must be served within a customer specific time
window, the VRP turns into the well known Vehicle Routing Problem with Time
Windows (VRPTW).

The VRPTW is an important NP hard combinatorial optimization problem
[1]. It has a wide applicability and has been the subject of extensive research
� Corresponding author.

T. Bartz-Beielstein et al. (Eds.): HM 2007, LNCS 4771, pp. 31–44, 2007.
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efforts. The solving of real-world VRPTW for delivering or collecting goods
needs distance and travel time information between customers that is based on
a road network. Therefore the Euclidean metric that is widely used in scientific
community for VRPTW (e.g. in the Solomon’s benchmarks problems [2]) has to
be substituted by real data from an Geographic Information System. Considering
the bidirectional nature of traffic flows on streets and road networks the access to
this data is organized as an asymmetric look-up matrix. Especially the existence
of one-way streets in the cities makes the usage of asymmetric matrices very
important for the optimization of routes in the urban area. Due to the time
constraints, an additional matrix containing forecasted travel times between each
pair of customers has to be created. The quality of forecasting can have a high
impact on the feasibility of solutions which are executed in the real-world.

For solving VRPTW problems, a large variety of algorithms has been pro-
posed. Older methods developed for the VRPTW are described in the survey [1]
and [3]. Most of the new methods tested on Solomon’s benchmarks are comprised
in [4], [5].

Methods that applied the two-phase approach of solving VRPTW are found
to be the most successful [6]. During the first phase the constructive heuristic
algorithm is used to generate a feasible initial solution. In the second phase
an iterative improvement heuristic can be applied to the initial solution. The
mechanism for escaping from local optimum is often implemented in the second
phase, too.

This paper describes the method of finding the strategy that needs less time
to produce a solution of desired quality. The success of strategies is determined
by the time needed to reach the quality threshold with some probability. Algo-
rithm implementations proposed in the paper could be improved step by step
by refining and adding more complex and powerful elements and procedures [7].

Reaching and escaping local optimum are important steps in the process of
finding the global optimum for the Iterated Local Search (ILS) and Simulated
Annealing (SA). Both strategies are developed in the same computational en-
vironment in order to have fair conditions for comparison. Both strategies use
the same way of reaching the local optimum which is local search procedure
with single λ(1, 0) operator for searching the neighborhood [8]. Escaping from
local optimum is done by perturbation procedure which is implemented as k-
step move in the solution neighborhood. The initial solution and the number of
iterations are the same as well. Iteration is defined as one cycle of algorithm’s
outer loop. The second step is significantly different for each strategy. In the
applied ILS the perturbated solution is brought to local optimum using the local
search procedure. If the new local optimum is better than the so far global best,
then that solution is the starting point for a new perturbation; otherwise, the
escaping step is discarded. On the contrary, Simulated Annealing never sets the
global best solution as the starting point for a new iteration. Also, the series
of perturbations are allowed if acceptance criteria are activated successively so
that there is a possibility of accepting an inferior solution.
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The main contribution of this paper is an attempt to implement the known
strategies in the form of simple algorithms on real cases and to conduct the statis-
tical analysis for finding the best suitable strategy for each considered problem.
Also, the Coefficient Weighted Distance Time Heuristics (CWDTH) is a novel
construction algorithm which gives feasible initial solution for all the considered
problems. The automated parameter tuning implemented in CWDTH algorithm
enables better adaptation of algorithm to problems with different spatial and
temporal distribution of customers. The remainder of the paper is organized as
follows: In Section 2 the initial solution methodology and improvement strate-
gies are described. Computational experiments and results are given in Section
3. Finally, in Section 4 conclusions are drawn.

2 Solution Methodology

2.1 Initialization

In order to solve the VRPTW problems, a constructive heuristic method CWDTH
based on the assignment of weights to serving times and distances to the serving
places [9] has been developed, Fig. 1.

procedure CWDTH ()
for each k[0, 1] in steps of 0.01 do

s := NewSolution()
v := FirstVehicle()
while not Solved()

c := BestUnservedCustomer(k)
Move(v, c)
if CapacityExhausted(v) then

Move(v, depot)
v := NextVehicle()

endif
endwhile
remember s if best so far

next
return s

end

Fig. 1. Coefficient Weighted Distance Time Heuristics algorithm

Coefficient interval [0, 1] traversed in empirically determined steps of 0.01 is
used for the construction of 101 potentially different solutions. In each pass the
algorithm starts from an empty solution and selects the first vehicle. Until all
customers are served, the routes are constructed by moving the selected vehicle
from its current position to the next best not yet served customer.

Procedure BestUnservedCustomer() uses coefficient k to put different weight
to distance and time constraint while selecting the next customer to serve. The
criteria of customer selection are:
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f(x) := MIN(k ·Distance(v, c) + (1-k) · LatestT ime(c)) .

Selection of customer c which minimizes function f(x) depends on the sum
of its geographic distance to vehicle v multiplied by coefficient k and its upper
bound of time window yield by function LatestTime multiplied by 1-k. After
the capacity of the selected vehicle is exhausted, it is returned to the depot
to complete the route and the next available vehicle is selected for routing.
The best of all the generated solutions is returned as initial solution for further
optimisation.

Such approach improves the capability of solving VRPTW problems that
have different time window configurations. In other words, the algorithm uses
the automated parameter tuning for better adaptation to the specific problem.

2.2 Local Search

The local search does not solve the VRP problem from the start, but rather
requires in-advance prepared feasible solution obtained by some other method,
e. g. CWDTH. The local search generates the neighborhood of the given solution
and thus successfully reduces the number of potential solutions that will be
candidates for the next iteration.

The mechanism of generating local changes, which is the basis for the suc-
cess of the iterative local search, is performed by single relocation of the cus-
tomer from one route into another over the set of all route pairs [8]. On such a
way the neighborhood Ni(s) is generated where s stands for the seed solution.

Fig. 2. Local search operator λ(1, 0)

procedure LocalSearch(s)
terminate := false
do

find best candidate solution s’ in neighborhood Ni(s) produced by λ(1, 0)
if f (s’ ) <f (s) then

s := s’
else

terminate := true
endif

while not terminate
return s

end

Fig. 3. Local search procedure
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The principle in which the λ(1, 0) operator modifies the routes is presented in
Fig. 2.

By iterative procedure this local search tries to improve the solution until it is
stuck in the local optimum. In each iteration, from the neighborhood of all the
feasible moves that respect time and capacity constraints, the best move that
produces the most significant saving is chosen to improve the current solution,
Fig. 3.

2.3 Implementation of Perturbation

Perturbation operator k-step move uses the same operator λ(1, 0) as local search
procedure but instead of the best move, random move is chosen to modify the
solution, Fig. 4.

procedure RandomLocalSearch(s)
choose random candidate solution s’ from neighborhood Ni(s) produced by λ(1, 0)
return s’

end

Fig. 4. Random local search procedure

This process is k times repeated during one perturbation. The described
perturbation gives a feasible solution regarding vehicle capacity and time con-
straints, Fig. 5.

procedure Perturbate(s)
n := CustomerCount()
p := 1 / n
k := BinomialDistribution(p, n)
for i :=1 to k

s := RandomLocalSearch(s)
next
return s

end

Fig. 5. Perturbation procedure

The number k is generated by binomial distribution generator with success
probability p and number of trials n. Values for p and n are empirically obtained.
Parameter n is set to number of customers in VRPTW problems and parameter
p is set to value 1/n.

2.4 Iterated Local Search

The local search process is started by selecting an initial candidate solution and
then proceeded by iteratively moving from one candidate solution to the neighbor-
ing candidate solution, where the decision on each search step is based on limited
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procedure ILS()
init := CWDTH ()
s := LocalSearch(init)
best := s
while not Terminate() do

s’ := Perturbate(s)
s” := LocalSearch(s’ )
if (f (s”) <f (best)) then

best := s”
s := best

endif
endwhile
return best

end

Fig. 6. Iterated Local Search Algorithm

amount of local information only. In Stochastic Local Search (SLS) algorithms,
these decisions as well as the search initialization can be randomized [10].

Generally, in the Iterated Local Search (ILS) two types of SLS steps are
used [11]. One step for reaching local optima as efficiently as possible and the
other for efficiently escaping local optima. Fig. 6 shows an algorithm outline for
ILS. From the initial candidate solution provided by CWDTH algorithm, local
search procedure is performed. Then, each iteration of ILS algorithm consists
of three major stages: first, a perturbation is applied to the current candidate
solution s. This yields a modified candidate solution s’ from which in the next
stage subsidiary local search procedure is performed until a local optima s” is
obtained. In the last stage the new global best solution is updated. The algorithm
stops after the termination criterion is met.

2.5 Simulated Annealing

Simulated Annealing is a stochastic relaxation technique that finds its origin
in statistical mechanics [12], [13], [14]. The name of the method comes from
analogy with the annealing process in metallurgy. In the annealing process the
material that is heated at high temperature slowly cools and crystallizes under
the outside control. Since the heating process allows random movement of atoms,
sudden cooling prevents the atoms from achieving the total thermal equilibrium.
When the cooling process goes slowly, atoms have enough time to achieve the
state of minimal energy forming the ordered crystal grid.

In the optimisation problem the solving of the configuration of atoms is re-
ferred to as the state of combinatorial problem, the role of energy is given to cost
function and temperature is replaced by control parameter. Simulated Annealing
uses stochastic approach to guide the search. The method allows the search to
continue in the direction of the neighbor even if the cost function gives inferior
results in that direction.
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procedure SA()
T := InitialTemperature()
init := CWDTH ()
s := LocalSearch(init)
best := s
while not Terminate() do

s’ := Perturbate(s)
s” := LocalSearch(s’ )
if (f (s”) <f (s)) then

s := s”
else

j := rnd(0, 1)
k := -((f(s”)-f(best))/f(best))/T
if j <exp(k) then

s := s”
endif

endif
if (f (s) <f (best)) then

best := s
endif
T := CoolingSchedule()

endwhile
return best

end

Fig. 7. Simulated Annealing algorithm

In Simulated Annealing algorithm, the starting solution obtained by CWDTH
heuristic and local search procedure is the same as for ILS algorithm and it is
set as the global best and as the current solution s as well, Fig. 7.

At each iteration of SA the k-step perturbation produces solution s’. The
perturbated solution s’ is additionally improved by the local search producing
a new solution s”. If a new solution s” is better than the current solution s, it
is accepted as a new current solution. Otherwise, if random generated number
within interval [0, 1) is smaller than the current value of acceptance criteria,
i.e. exp(-((f(s”)-f(best))/f(best))/T ), even a worse solution is accepted as the
current one. The global best solution is updated if the newly generated solution
is better. Initial temperature and cooling schedule are empirically determined
once during construction of algorithm and remain the same for all real-world
problems and Solomon’s benchmark.

2.6 Benchmark Results

Before application of algorithms on real-world problems, CWDTH initial solution
algorithm and ILS and SA strategies were tested on the standard Solomon’s
benchmark problems [2]. Comparison of obtained results with the competent
results from the literature is shown in Table 1. Testing of both strategies was
performed on the 30 independent runs and 4000 iterations as termination criteria.
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Table 1. Comparison of results obtained by CWDTH, ILS and SA to the best recently
proposed results for Solomon’s VRPTW problems. CM stands for cumulative values,
CPU stands for the processor characteristics and execution time.

R1 R2 C1 C2 RC1 RC2 CM CPU

HG [15] 12.08 2.82 10.00 3.00 11.50 3.25 408 Pentium 400
1211.67 950.72 828.45 589.96 1395.93 1135.09 57422 3 runs; 1,6 min

BC [16] 12.08 2.73 10.00 3.00 11.50 3.25 407 Pentium 933
1209.19 963.62 828.38 589.86 11389.22 1143.70 57412 1 run; 512 min

PR [17] 11.92 2.73 10.00 3.00 11.50 3.25 405 Pentium 3000
1212.39 957.72 828.38 589.86 1387.12 1123.49 57332 10 runs; 2,4mi

M [18] 12.00 2.73 10.00 3.00 11.50 3.25 406 Pentium 800
1208.18 954.09 828.38 589.86 1387.12 1119.70 56812 1 run; 43,8 min

CWDTH 15.08 3.64 10.44 3.50 14.00 4.25 489 Centrino 2000 duo
1543.42 1436.86 1004.17 815.22 1797.21 1661.52 77556 100 runs; 0,1 min

ILS 13.67 3.55 10.00 3.25 13.25 4.25 459 Centrino 2000 duo
1257.79 1022.12 839.47 613.44 1443.52 1192.51 59888 30 runs 7 min

SA 13.08 3.27 10.11 3.25 12.63 3.75 441 Centrino 2000 duo
1282.22 1053.64 901.37 621.14 1444.15 1239.03 61523 30 runs; 7 min

It is interesting to observe numerical values of cumulative number of vehicles
in Table 1. This number include all variations of Solomon’s and roughly depict
robustness of algorithms.

Comparison of results obtained by very simple CWDTH constructive algo-
rithm and algorithms with advance techniques for optimization, shows that sim-
plicity degrades results approximatively for 20%. Additional local search with
one operator λ(1, 0) guided by ILS or SA basic strategies can improve solutions
for 10% more.

2.7 Performance Measure

To compare different algorithms or different parameterized algorithms in an
empirical study we were using a performance measure [19] that is motivated
by the following question: How often do we have to run an algorithm with a
concrete parameter setting so that the resulting solutions are equal or better
than a requested quality threshold at a requested accuracy level (i.e. 90%). The
lowest number of runs that assures these requests is called multi-start factor
(MSF ). The MSF multiplied by the average runtime of the fixed parameterized
algorithm is the performance measure that has to be minimized.

The estimation of the MSF is based on the fact that the success probability
p of being better than the requested threshold quality in one run is Bernoulli
distributed. Therefore we can use a parameterized maximum likelihood estimator
to determine the success probability p for one run. This implies that the success
probability for k runs (in k runs there is at least one successful run) is exactly
1− (1− p)k and that the MSF for reaching a requested accuracy level(AL) can
be easily computed using a geometrical distribution with success probability p

MSF := min(k ∈ N with 1− (1− p)k ≥ AL) .
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When using the intermediate results after each iteration of an algorithm, this
procedure can also be used to determine the best combination out of stopping
criteria (i.e. maximal number of iterations) and number of restarts for a requested
quality threshold and accuracy level.

In this paper we were using the statistical data out of 30 runs for each al-
gorithm and problem instance to estimate the success rates and the average
runtimes for all stopping criteria up to 4000 iterations.

The statistical analysis was applied to a series of combinations out of three
accuracy levels and two quality thresholds. For the accuracy levels we were using
the predefined values 90%, 95%, and 99%. The quality thresholds were chosen
out of the data by following procedure: The first quality threshold was defined
by the quality value that was reached by the worst out of the 25% best runs
after 4000 iterations. The second quality threshold was defined by the quality
value that was reached by the worst out of the 10% best runs.

3 Computational Results

3.1 Characteristics of Data Set

Comparison of ILS and SA strategies was performed on four real-world problems.
The objective function for all problems is constructed without penalty because
all the operators produce a feasible solution. To force reduction of vehicles in the
fleet the objective function is defined as a product of the number of vehicles and
the total traveled distance. Problems are classified as VRPTW and described in
Table 2.

All problems have homogeneous fleet of vehicles except problem VRP3, and
are located in the same geographical area of the city of Zagreb, the capital of
Croatia, Fig. 8.

Only one problem, VRP3, spreads on the road networks outside the capital
and uses highways between cities. Problems VRP1, VRP3 and VRP4 are math-
ematically described by distance asymmetric look-up matrix and the related
forecasted travel time matrix. The calculation of travel time matrix is based on
the average velocity on a particular street or road segments. If such information
is not available then the calculation is based on the rank of the road segments.
The road ranking follows the national classification which divides them in six-
teen categories. Problem VRP2 has linear dependency between the matrix of
minimal distances and the matrix of travel times. In problems VRP2 and VRP4

Table 2. Problem characteristics

Problem Domain Customers Vehicles

VRP1 Drugs delivery 64 7

VRP2 Door-to-door delivery of goods 90 3

VRP3 Delivery of consumer goods 107 14

VRP4 Newspaper delivery 154 6
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Fig. 8. Geographical distribution of customers for all problems

several customers have narrow time windows and in problems VRP1 and VRP3
most of the customers are constrained by terms of working hours of the pickup
and delivery department, which means that time windows are relatively wide.

The substitution of the Euclidean metric by the matrix of minimal distances
between customers and the use of forecasted travel times for checking time win-
dow constraints raises many interesting questions. One of them is the possibility
of losing information which can be usable for additional optimisation when we
transform real transport networks of streets and roads from geographic informa-
tion system to asymmetric bidirectional graph with the mentioned asymmetric
lookup matrix of minimal distances. At first glance the loss of such information
seems to be a problem, but precise analysis leads us to the conclusion that all
information that is really important for optimisation of routes are still stored
in asymmetric minimal distance matrix. Another important issue is the travel
time forecasting model. Such model should be able to predict how much time is
needed for a vehicle to move from one geographic location to another in dynamic
traffic environment.

3.2 Comparative Analysis

Final results of experiments are shown in Table 3 and Table 4. The exami-
nation pool of results was constructed by 240 runs of developed ILS and SA
algorithms. In order to determine which strategy needs less time, i.e. number
of restarts multiplied by the number of iterations, to produce a solution below
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Table 3. Optimal tuning parameters for VRP problems. AL = Accuracy Level, T =
Threshold, ALG = Algorithm, MSF = Multi-start factor, IT = Optimal number of
iterations per each run.

AL VRP1 VRP2 VRP3 VRP4
90% ALG MSF IT ALG MSF IT ALG MSF IT ALG MSF IT

T1 ILS 9 418 ILS 17 334 SA 9 720 SA 6 1210
T2 ILS 17 1606 ILS 17 3623 SA 34 720 SA 13 1955

Table 4. Multi-start factors for VRP problems. AL = Accuracy Level, T = Threshold,
IT = Optimal number of iterations per each run.

VRP1 VRP2 VRP3 VRP4

AL T1 T2 T1 T2 T1 T2 T1 T2
IT=418 IT=1606 IT=334 IT=3623 IT=720 IT=720 IT=1210 IT=1955

90% 9 17 17 17 9 34 6 13

95% 12 21 21 21 12 44 8 17

99% 26 49 49 49 26 101 18 38

the threshold with some accuracy, each problem was solved 60 times (each al-
gorithm 30 runs). Table 3 shows optimal parameters of the winning strategy for
all problems.

Parameters from Table 3 guarantee reaching of the threshold interval in min-
imal time with accuracy of 90%. For example, VRP1 needs to be restarted 17
times with halting criteria set to 1606 iterations per start for ILS algorithm. If
we increase the accuracy level the number of restarts increases. For each problem
the dependencies of multi-start factor and accuracy level are shown in Table 4.

The thresholds are defined in such a way that all the results obtained by ILS
and SA are sorted in a list where the value of objective function on the last
iteration is the number on which the sorting is done. Threshold T 1 is calculated
so that 25% of runs in the sorted list are in the T 1 threshold interval. Threshold
T 2 has 10% of best runs. Runs that reached the threshold interval T 2 for all
four problems are depicted in Fig. 9.

Statistical analysis of 30 runs gives us the result for VRP1 and VRP2 revealing
that ILS will reach the threshold in less time than SA algorithm. It is reasonable
to say that ILS algorithm achieved steeper descent of cost function in fewer
iterations for VRP1 and VRP2 compared to SA. On the other hand SA algorithm
performs better for two larger problems VRP3 and VRP4. The overall best
results for problems VRP3 and VRP4 are obtained by SA near the end of the
cooling schedule, so that the resulting graphs confirm the expected convergence
behavior of SA at very low temperature. The average running times of algorithms
for each problem are given in Table 5. All algorithms are coded in programming
language MARS [20].
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Fig. 9. Results that reached threshold interval T2, i.e. 10% best runs, for each VRP
problem. SA - Simulated Annealing, ILS - Iterated Local Search, sr - success rate, sb
- statistically best
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Table 5. Average running time. The CPU time is given for 10 runs and 4000 iteration
per run.

VRP1 VRP2 VRP3 VRP4

Algorithm ILS SA ILS SA ILS SA ILS SA

CPU [min] 1:03 1:02 4:55 4:46 2:01 1:54 11:31 13:13

4 Conclusions

Test-bed with four real-world VRPTW problems was set up for comparison of
two metaheuristic strategies. The Iterated Local Search and the Simulated An-
nealing strategies are evaluated in the computationally fair environment using
the same procedures such as perturbation and local search, and the same exper-
imental setting like the number of iterations and the initial solution.

A decision criterion for choosing the strategy is optimal time for reaching the
threshold interval with the targeted accuracy level. The time is represented as
the product of the number of runs and the time for reaching maximal iterations
per each run. The threshold interval is defined empirically by the number of best
runs. The accuracy level is the probability to reach the threshold in the defined
time. The results of the conducted experiments give optimal number of restarts
and the number of iterations for each run and also refer to the strategy which is
best to use to achieve the threshold in minimal time.

The developed algorithms and the applied statistical procedures show that we
can validly choose between the well known ILS and SA strategies for a set of test
problems. The increase of accuracy level has as a consequence the increase of the
number of runs but does not change the number of iterations for this particular
set of examined problems.

There is no obvious lead to state that ILS or SA is better than the other
one for all the examined problems, but the results show that ILS is better for
smaller problem instances and that ILS reaches threshold interval faster. SA
works better for larger problems. The application of the described methodology
may be able to help a practitioner to roughly approximate the running time with
minor changes in topology and constraints of a problem.

The implemented CWDTH algorithm could be a good choice for the initial
feasible solution because of its simple implementation especially in the case of
practical problems.

New real-world problems with asymmetric matrices of minimal distances and
forecasted travel times are introduced.
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Abstract. In this paper the influence of structural information obtained
from a problem relaxation on the performance of an ACO algorithm
for the symmetric TSP is studied. More precisely, a very simple ACO
algorithm is guided by including Minimal Spanning Tree information into
the visibility. Empirical results on a large number of benchmark instances
from TSPLIB are presented. The paper concludes with remarks on some
more elaborate ideas for using problem relaxation within ACO.

1 Introduction

The Travelling Salesman Problem (TSP) lies at the heart of many problems
in goods distribution, most prominently the Vehicle Routing Problem (VRP).
Given a complete graph G = (V, E), where V is a set of n vertices and E is
the set of edges, each of which is assigned a weight denoting the edge length,
the problem is to find a shortest tour that visits each vertex exactly once and
then returns to its origin vertex (for more details see [11]). The TSP is called
symmetric if the distance between two nodes i and j is the same regardless of
the direction of travel, and asymmetric otherwise.

Despite this simple problem description, the TSP is an archetypical NP-hard
problem, i.e. the number of computations needed to exactly solve an instance
of the TSP grows exponentially with the number of vertices to be visited. For
more information about the theory of NP completeness see [6].

Consequently, the TSP is often used as a testbed for new algorithmic develop-
ments and a large number of heuristic and metaheuristic techniques, e.g. Tabu
Search, Simulated Annealing or Ant Colony Optimization (ACO) have first been
applied to the TSP.

However, by relaxing some of the TSP constraints one obtains a much simpler
problem. Solving this simpler problem yields generally good lower bounds on the
objective value of the TSP and the structure of the solution may be used for
exact techniques based on, e.g. Branch & Bound. For asymmetric TSPs a very
tight bound (usually within 1-2%) is provided by the solution of the assignment
problem. Due to that, very large instances of the asymmetric TSP can now be
solved to optimality. Also most metaheuristics perform extremely well on these
instances.
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For symmetric problems, the assignment bound is generally much weaker (due
to elementary short cycles) and better bounds can be obtained from the Minimal
Spanning Tree (MST), or the 1-Tree solution. Unfortunately, in absolute terms
these bounds are not as good as the assignment bounds for the asymmetric TSP
and the symmetric TSP is more difficult to solve. On the other hand, when
analyzing the structures of the MST and the optimal TSP solution on some
benchmark instances it showed that the two solutions have a large number of
edges in common (around 70-80%).

Thus, in this paper we will focus on the symmetric TSP and study the influ-
ence of exploiting this information within an Ant Colony Optimization (ACO)
algorithm. ACO has been first proposed in [2] and is based on stigmergic learning.
More precisely, a population of artificial agents repeatedly constructs solutions
to the problem using a joint population memory (called pheromone) and some
heuristic information (called visibility). After each member of the population has
constructed its next solution, the memory is updated with a bias towards bet-
ter solutions found. Gradually, the memory will build up, thus gaining stronger
influence on the solutions built by the artificial agents and the solutions will
evolve towards the global optimum. Convergence proofs for generalized versions
of ACO algorithms can be found in [8], [9] and [14]. For an overview of recent de-
velopments on ACO see [5]. Generally, the best ACO algorithms available today
utilize sophisticated local search algorithms and mostly quite elaborate solution
construction techniques. While this causes an increase in computational effort
per iteration, the obtainable results generally justify this increase.

The approach proposed in this paper deviates from this idea. As we wish to
study the influence of using structural insights from the problem relaxation we
use a very simple Nearest Neighbor based solution construction for the TSP,
where decisions are guided by edge information from the MST. More precisely,
edges contained in the MST receive more heuristic weight (referred to as visibility
in ACO terminology) than those that are not part of the MST. Throughout the
paper, this approach will be referred to as MST-Ants. Its main advantage is
the simplicity. Also the heuristic information is static and can be computed
beforehand thus enhancing the speed of the algorithm.

Note that in combining ACO with a lower bounding procedure our approach
is related to the algorithm presented in [13], where such a combination was first
proposed and applied to the QAP. In that paper each possible move of an ant
was evaluated by its impact on the lower bound and moves were discarded when
leading to a bound that was larger than the current upper bound. Thus, the
bounds were computed dynamically as solutions were built, incorporating the
information of the partial solution to be extended. As mentioned above, in our
approach the structure of the lower bound solution is exploited only statically
by adjusting the visibility once and for all.

The remainder of this paper is organized as follows. In the next section the
details of the MST-Ants for the TSP are laid out. After that results from a thor-
ough computational study performed on benchmark instances from the TSPLIB
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are presented before some more ideas for possible utilization of problem relax-
ation within ACO are discussed.

2 MST-Ants for the TSP

A high level description of the proposed algorithm is given in Figure 1. Before
the iterative part of the ACO algorithm starts an MST is computed using the
well known algorithm of Kruskal (c.f. [10]) and the visibility, taking the MST
information into account, is then computed beforehand and stored for use within
the solution construction of the ACO algorithm.

procedure MST-Ants{
Read the input data;
Initialize the system (parameters and global pheromone matrix);
Compute a minimum spanning tree using the algorithm of Kruskal;
Compute the visibility between all pairs of customers using distance and
MST information;
repeat {

for each ant {
Construct a TSP tour using a randomized Nearest Neighbor algorithm;
Apply a 2-opt algorithm to the ants tour;
Update the best found solution (if applicable);

}
Update the global memory (global pheromone matrix);

} until a pre-specified stopping criterion is met;
Return the best found solution;

}

Fig. 1. The MST-Ants procedure

The main characteristics of the MST-Ants, namely its solution construction,
local search and pheromone initialization and update are described in more detail
now.

2.1 Nearest Neighbor Based Solution Construction

As ACO is a constructive Meta-Heuristic a solution construction mechanism has
to be chosen. In most ACO implementations, including the one presented in this
paper, this solution construction is based on a Nearest Neighbor mechanism.
That is, the ant starts at one of the customers and then sequentially adds cus-
tomers at the end of its sequence until all the customers have been visited. To
avoid multiple visits at customers the ant is equipped with a tabu list, where
visited customers are stored. As one generally uses a population of ants much
smaller than the problem size, the first question is where to let the ants start.
In this paper, each ant is randomly placed at a customer.

The decision making of each ant, i.e. the choice of the next customer to be
visited, is based on a probability distribution depending on both the visibility
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and the pheromone. In a given decision step, let Ω denote the set of feasible
neighbors, i.e. the set of customers that have not yet been visited, and let i be
the current location of an ant then the decision rule is given by equation 1, where
Pij is the probability of choosing to move to customer j in the next step.

Pij =

⎧
⎨

⎩

ηijτij∑
h∈Ω ηihτih

if j ∈ Ω

0 otherwise.
(1)

Here τij denotes the pheromone concentration on the edge connecting vertices
i and j and contains information from the search history about how good visiting
customer j immediately after customer i was in previous iterations.

The visibility ηij utilizes heuristic information about the edges. Generally, in
the context of the TSP this heuristic information is the inverse distance, i.e.

ηij =
1

dij
∀(i, j) ∈ E,

where dij is the distance between customers i and j.
The main idea proposed in this paper is to use structural information from the

exact solution of a problem relaxation, in this case the MST. Let tij be a binary
variable with tij = 1 if the edge (i, j) is part of the MST solution and tij = 0
otherwise. Then, this information is used to modify the visibility as shown in
equation 2, where γ is the weight associated to the MST information.

ηij =
1 + γtij

dij
∀(i, j) ∈ E,

Clearly, for edges that are not part of the MST the heuristic information is
unchanged, while those in the MST will receive higher priority depending on
γ. Note that this approach is static and can be computed once and for all at
the beginning of the algorithm. Contrary to that a dynamic approach has been
proposed in [13] for the QAP where for each partial solution and each poten-
tial move a lower bounding procedure was evoked to compute ηij . While our
approach does not influence runtime crucially, the algorithm in [13] features a
significant trade-off between effectiveness and efficiency of the bounding proce-
dure and only simple bounds were used.

2.2 Local Search

After the ants have constructed their solutions but before the pheromone is
updated each ants solution is improved by applying a local search, more precisely
the 2-opt algorithm (c.f. [3]). This algorithm iteratively exchanges two edges with
two new edges until no further improvements are possible.

To cut back on the computational effort required for this local search, it is
customary to use neighborhood lists for each customer i and to consider only
moves for i that include one of its neighbors. However, if the number of neighbors
is too small, solution quality deteriorates as some options may not be exploited.
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Thus, in the results presented in this paper a neighborhoodsize of k = n = 4 is
used, where n is the total number of customers in the problem.

2.3 Pheromone Initialization and Update

In the constructive phase of the ACO algorithm decisions are based on both
heuristic information and the pheromone values as described above. At the end
of each iteration, i.e. once all ants have gone through solution construction and
local search, these pheromone values are updated as follows:

τij := ρτij + (1− ρ)Δτ∗
ij ∀(i, j) ∈ E (2)

where 0 ≤ ρ ≤ 1 is called the trail persistence and Δτ∗
ij is the amount of

reinforcement, which is defined as

Δτ∗
ij :=

{
1 if (i, j) ∈ S∗

0 otherwise. (3)

Here S∗ is the best solution found up to the current iteration (regardless if it
was found in the current iteration or earlier). Note that pheromone values are
unit-free and thus independent of monotonous transformations of the objective
value. Together with the fact that at the beginning of the run, the pheromone
values are initialized to 1, i.e.

τij = 1 ∀(i, j) ∈ E, (4)

this update strategy implies that the pheromone values now have a well defined
domain, namely τij ∈ [0, 1]. In this sense, this approach is similar to the so called
Hypercube Framework proposed in [1], where additionally the pheromone values
can also be interpreted as transition probabilities which does not hold in our case.
However, this interpretation is particularly interesting from a theoretical point
of view and less critical when heuristic information is also included as is the case
in our approach.

3 Numerical Analysis

In this section results of comprehensive computational tests performed to evalu-
ate the performance of the MST-Ants are reported. The code was implemented
in C and executed on a Pentium III with 900 MHz.

Experiments are based on a set of euclidian problem instances from the
TSPLIB.1 More precisely all instances with less than 1000 customers have been
chosen, totalling 47 instances.2

To run the MST-Ants a number of parameters have to be set. The settings
are m = 20 Ants, ρ = 0.975, τ0 = 1 and a neighborhoodsize of k = n/4. The
maximum number of iterations was set to 5n.
1 The problem data and information about the optimal/best known results can be

obtained from the webpage
http://www.iwr.uni-heidelberg.de/iwr/comopt/software/TSPLIB95/

2 Note that there are actually 48 instances with less than 1000 customers. However,
the instance fl417 was not used, due to a problem with the input data.
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3.1 Effects of Using the MST Information

As the main issue studied in this paper is the question whether the structural
information from the problem relaxation is useful for the ants, we will analyze
the influence of the MST information first. To that end, we compare results
with γ = 1, i.e. the MST-Ants, with the case where γ = 0 which corresponds
to the classic visibility without MST information, referred to as NN-Ants. Both
approaches were applied 5 times to each problem instance. Note, that it is not
the goal of this paper to optimally parameterize the MST information, such that
no systematic analysis of different values γ > 0 was performed.

As the problem instances vary between 51 and 783 customers, the analysis of
results will be based on a partition of the instances into two groups depending on
the problem size and the computation times required to solve these instances.
More precisely, the set of instances comprises 37 instances with at most 318
customers and 10 instances with 400 or more customers. Moreover, for the first
group of instances, we will refer to this group as SMALL, the average computa-
tional effort to reach the best solution varies from 0 to 400 seconds, whereas for
the second class of problems, which we will refer to as LARGE, it takes between
750 and 5200 seconds to come up with the best solution. Thus, while the par-
tition chosen is somewhat arbitrary, it reflects the differences between the two
groups both with respect to size and computational effort quite nicely. Note that
complete results for all instances are provided in Appendix 1.

Table 1 gives for both approaches the best, average and worst relative percent-
age deviation from the optimal solution (RPD) over both groups of instances,
as well as the average times (in seconds) to reach the best solution.

The results in Table 1 highlight the differences in the two groups of instances.
While the SMALL instances can be solved very efficiently by both approaches
the LARGE instances are much more difficult. First, both the MST-Ants and
the NN-Ants need much larger computation times for reaching good solutions
in these instances and second, the solution quality is significantly worse.

Note, that the overall computation time for both approaches is equal as the
only difference is the value for γ, which has no influence on the total complexity
of the algorithm. Still, for the LARGE instances the actual time needed to find
the best solution seems to be better for the MST-Ants. Moreover, for these
instances the best solution found by the MST-Ants seems to be better than
the best solution found by the NN-Ants. On the other hand, for the SMALL

Table 1. RPD and computation times needed by the MST-Ants and the NN-Ants for
SMALL and LARGE instances

Problem MST-Ants NN-Ants
group RPD (best / avg. / worst) sec. RPD(best / avg. / worst) sec.

SMALL 0.04 / 0.14 / 0.29 66.97 0.02 / 0.13 / 0.30 69.22
LARGE 0.58 / 0.84 / 1.11 2112.03 0.67 / 1.00 / 1.35 2375.64
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Table 2. Results of the Wilcoxon signed ranks tests for differences in the RPDs and
computation times of the MST-Ants and the NN-Ants

Problem best RPD average RPD worst RPD computation time
group T T0 T T0 T T0 T T0

SMALL 4 2 144 90 122 73 290 198
LARGE 11 6 6∗ 8 0∗ 8 19 5

instances the solution quality and computation times are basically identical for
the two approaches.

To validate these results statistically, a Wilcoxon signed ranks test was applied
to the samples. More precisely, tests for differences in the best, average and worst
RPDs obtained as well as the computation times needed by the two variants,
MST-Ants and NN-Ants, were performed for both the SMALL and LARGE
instances. For each of these cases the test statistic T together with the critical
values T 0 are reported in Table 2. All the results are based on 1-sided tests
whether or not the MST-Ants outperform the NN-Ants and are valid at a 2.5%
level of confidence. The null hypothesis can be rejected if T ≤ T 0, i.e. in these
cases the MST-Ants significantly outperform the NN-Ants.

Results marked with an asterisk indicate that the null hypothesis could be
rejected. Thus, Table 2 reveals that for the SMALL instances there is no signif-
icant difference in the RPDs between the MST-Ants and the NN-Ants. On the
other hand, for the LARGE instances the inclusion of MST information yields
significantly better average and worst case behavior, while it leaves the quality
of the best solutions unchanged.

Looking at computation times, Table 1 suggests that the efficiency of the
algorithm for LARGE instances improves if MST information is used. As can
be seen from Table 1, the MST-Ants take about 2112 seconds on average to find
the best solutions for the LARGE instances, while the NN-Ants take about 2375
seconds on average to find their best solutions, thus consuming approximately
4.5 minutes more computational effort. However, as can be seen from Table 2, the
statistical analysis does not confirm a significant difference in the computation
times needed by the two variants for either of the two problem groups.

Summarizing these results, the MST-Ants seem to outperform the NN-Ants
with respect to both quality and runtime on the LARGE instances, however
only the difference in quality is statistically significant. For the SMALL instances
there is no difference in a statistical sense. Thus, the use of MST information
clearly improves the robustness of the algorithm in terms of the variability of
the results as the problem complexity (size) increases.

3.2 Comparing MST-Ants with Other as Algorithms

From Table 1 it was obvious that the absolute results of the MST-Ants differ
quite significantly for the two groups of problems analyzed, i.e. the performance
of the MST-Ants was much worse on the LARGE instances than on the SMALL
instances.
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Table 3. Comparison of RPDs and computation times needed by the MST-Ants, the
GACS and the ACS for SMALL and LARGE instances

Problem MST-Ants GACS ACS
group RPD (best/avg.) sec. RPD (best/avg.) sec. RPD (best/avg.) sec.

SMALL 0.04 / 0.14 150.68 0.10 / 0.13 493.86 0.18 / 0.36 296.86
LARGE 0.58 / 0.84 4752.07 1.36 / 1.46 8807.56 1.49 / 1.75 12459.67

The analysis performed in this section will relate the quality obtained by the
MST-Ants with the quality obtained by two other Ant algorithms presented
in [12] to get a more realistic picture about this relationship between size and
obtainable solution quality as well as about the performance of the MST-Ants
in absolute terms.

The two algorithms used for comparison are a standard Ant Colony Sys-
tem (ACS ) implementation and a combination of the GENI algorithm proposed
in [7] with an ACS, denoted as GACS. Both algorithms were implemented by
Le Louarn et al. (c.f. [12]), where the standard ACS is a re-implementation of
the algorithm proposed in [4].

The main idea of the GACS is to replace the Nearest Neighbor based solution
construction with the sophisticated GENI algorithm that is based on an insertion
criterion. Thus, an unrouted customer may not only be appended at the end
of the route, but inserted at its best position along the planned route as this
generally improves the solution significantly. More details about this approach
can be found in [7] and [12].

Table 3 shows the results of the comparison between the MST-Ants and the
two other ACO algorithms. As in the last section results are provided over the
two classes, SMALL and LARGE, and the columns show the best and average
RPDs and the computation times in seconds for the competing approaches.3

Note, that complete results for each instance are presented in Appendix 1.4

The results for the GACS and the standard ACS are based on three runs
for each instance on an Ultra Sparc 2 with 400 MHz. As stated above, the
results for the MST-Ants were computed on a Pentium III with 900 MHz. Given
these differences in the machines used, the computation times for the MST-Ants
presented in Table 3 have been multiplied with 2.25 to provide a fair comparison.
Note that in Appendix 1 the original computation times are presented.

Table 3 clearly suggests the superiority of the MST-Ants over the competing
ACS algorithms both in terms of solution quality and in terms of computational
requirements. Furthermore, both aspects become more striking for the LARGE
instances where the worst RPD obtained by the MST-Ants (given in Table 1) is
better than the best RPD by the two competing Ant Systems. Apart from that
computation times differ greatly, even after adjusting for machine differences.

3 Worst RPDs are not shown as those are not reported in [12].
4 Note further, that Table 3 presents averages over 35 SMALL and 9 LARGE in-

stances, as the instances kroa100, pr299 and u574 have been used for parameter
tuning in [12] and have thus been excluded from further testing.
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Table 4. Results of the Wilcoxon signed ranks tests for differences in the RPDs and
computation times of the MST-Ants, the GACS and the ACS

MST-Ants vs. GACS MST-Ants vs. ACS
computation computation

Problem best RPD avg. RPD time best RPD avg. RPD time
group T T0 T T0 T T0 T T0 T T0 T T0

SMALL 7∗ 14 97 73 32∗ 195 17.5∗ 59 37∗ 127 161∗ 195
LARGE 0∗ 6 0∗ 6 3∗ 6 0∗ 6 0∗ 6 0∗ 6

Once again, a Wilcoxon signed ranks test was used to statistically support
these statements for both the best and the average RPDs and the computation
times of the different approaches. Table 4 shows the test statistic T together
with the critical values T 0 for a confidence level of 2.5% for both the SMALL
and the LARGE instances.

As in Table 2, entries marked with an asterisk denote that the null hypothesis
of no differences in the samples could be rejected. Thus, Table 4 clearly shows,
that the best and the average RPD of the MST-Ants significantly outperforms
its counterparts of GACS and ACS for the LARGE instances. In fact, for each
of the LARGE instances both the best and the average RPD are better than
the corresponding values of the GACS and the ACS approach.

For the SMALL instances the Wilcoxon signed ranks test shows that the
MST-Ants outperform the ACS for both the best and the average RPD, while
the difference between the MST-Ants and the GACS is statistically significant
only for the best RPD, whereas there is no difference for the average RPD.

Looking at computation times, the results in Table 4 show that the MST-
Ants find their best solutions significantly earlier than both the GACS and the
ACS for both problem groups. Overall, the conclusion is that the MST-Ants are
clearly superior to both GACS and ACS with respect to both solution quality
and computational effort required.

4 Conclusion

In this paper a possible approach for guiding ACO by structural information
from the MST relaxation of the symmetric TSP was presented. Within a very
simple ACO algorithm the visibility was augmented by the edge information from
the MST. It was shown and statistically validated over a large set of benchmark
instances that using the MST information improves the robustness of the ACO
algorithm significantly. Moreover, particularly for large instances the approach
finds solutions of superior quality in smaller computation times when compared
with other existing ACO algorithms.

The approach laid out in this paper is one possibility of combining problem
relaxation with ACO for the TSP. While the results obtained are very promising,
it is worth noting that some other approaches may be even better. Among those
are the following issues for further research. First, instead of using the MST
information in the visibility it may be better to initialize the pheromone matrix
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with this information. Particularly, if some information from the MST may be
misleading, pheromone initialization could be an interesting opportunity as in
this case the tree information is not permanent but rather - through evaporation
- can be forgotten over time.

Second, instead of computing the MST once at the beginning of the algorithm
it may be favorable to repeatedly compute an MST based on distance data
modified by pheromone information. Thus, as the ants build up their pheromone
memory, this information could be used to build alternative MSTs and to come
up with more diverse and hopefully better solutions.

Third, and this is the most invasive approach, it may be possible to start each
ants’ solution construction with an MST such that the ant tries to turn the MST
into a feasible TSP solution.

Finally, looking at the approach at a more general level reveals that it may be
applicable to other combinatorial optimization problems as well. The basic idea
is to relax some constraints of the original MILP formulation, to solve the relaxed
problem exactly and to use information thus obtained to generate solutions for
the original problem with ACO. Even if the problem relaxation is not a known
combinatorial problem, as the MST Problem in this case, the fractional decision
variables in an LP relaxation may be useful as initial pheromone or visibility for
the ants. This approach has also been pointed out in [13].
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Appendix 1

In this appendix, complete results over all problem instances are provided for the
MST-Ants and the NN-Ants proposed in this paper, as well as the GACS and
the ACS from [12]. More precisely, Table 5 contains the following information.
The first column gives the names of the problem instances, where the numbers
in the names correspond to the problem size, i.e. the number of customers. The
second column shows the optimum solutions for these instances. Columns 3 and
4 correspond to the MST-Ants. Column 3 provides the best, average and worst
RPD (relative percentage deviation over the optimal solution) obtained by the
MST-Ants over 5 runs for each instance, while column 4 shows the average
times required to reach the best results. Columns 5 and 6 show the same perfor-
mance measures for the NN-Ants. Columns 7 and 8 correspond to the GACS,
where column 7 shows the best and average RPD for the GACS obtained over
3 runs for each instance, while column 8 presents the associated computation
times. Finally, columns 9 and 10 show the same performance measures for the
ACS.
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Table 5. Complete results for all instances with less than 1000 customers, for MST-
Ants, NN-Ants, GACS and ACS

Problem MST-Ants NN-Ants GACS ACS
instance Opt. best/avg./worst sec. best/avg./worst sec. best/avg. sec. best/avg. sec.

eil51 426 0.00/0.00/0.00 2.64 0.00/0.05/0.23 1.6 0.00/0.00 8 0.00/0.08 1
berlin52 7542 0.00/0.00/0.00 0.38 0.00/0.00/0.00 0.6 0.00/0.00 1 0.00/0.00 1
st70 675 0.00/0.00/0.00 3.78 0.00/0.00/0.00 3.4 0.00/0.00 3 0.00/0.40 26
eil76 538 0.00/0.00/0.00 6.04 0.00/0.07/0.19 5 0.00/0.00 80 0.00/0.00 3
pr76 108159 0.00/0.00/0.00 3.4 0.00/0.00/0.00 3.8 0.00/0.00 10 0.00/0.00 3
rat99 1211 0.00/0.02/0.08 11.33 0.00/0.03/0.08 7.8 0.00/0.00 80 0.00/0.25 137
kroa100 21282 0.00/0.00/0.00 10.58 0.00/0.00/0.00 9.2
krob100 22141 0.00/0.00/0.00 10.96 0.00/0.10/0.26 10.2 0.00/0.00 135 0.00/0.23 55
kroc100 20749 0.00/0.00/0.00 9.44 0.00/0.00/0.00 8.6 0.00/0.00 8 0.00/0.00 41
krod100 21294 0.00/0.03/0.07 12.84 0.00/0.04/0.07 9.8 0.00/0.00 31 0.00/0.06 19
kroe100 22068 0.00/0.05/0.24 12.09 0.00/0.11/0.33 11.2 0.00/0.00 119 0.15/0.33 94
rd100 7910 0.00/0.02/0.08 10.96 0.00/0.09/0.43 10.4 0.00/0.00 27 0.45/0.77 9
eil101 629 0.00/0.16/0.48 13.6 0.00/0.00/0.00 12.6 0.00/0.05 222 0.08/0.64 28
lin105 14379 0.00/0.00/0.00 7.56 0.00/0.00/0.00 6.2 0.00/0.00 8 0.00/0.00 9
pr107 44303 0.00/0.06/0.19 12.84 0.00/0.00/0.00 11.2 0.00/0.00 19 0.30/0.40 15
pr124 59030 0.00/0.00/0.00 11.71 0.00/0.00/0.00 14 0.00/0.00 36 0.00/0.05 9
bier127 118282 0.00/0.00/0.00 27.58 0.00/0.00/0.00 26.6 0.00/0.08 321 0.10/0.48 136
ch130 6110 0.00/0.34/0.74 28.33 0.00/0.33/0.74 27 0.00/0.00 218 0.21/0.45 236
pr136 96772 0.02/0.16/0.46 30.22 0.01/0.18/0.51 27.2 0.22/0.28 516 0.12/0.51 104
pr144 58537 0.00/0.00/0.00 18.13 0.00/0.00/0.00 18.4 0.00/0.00 375 0.00/0.00 813.7
ch150 6528 0.00/0.23/0.43 40.42 0.00/0.16/0.32 37.2 0.12/0.28 123 0.25/0.39 21
kroa150 26524 0.00/0.00/0.00 40.8 0.00/0.18/0.72 41.6 0.00/0.00 555 0.00/0.01 661
krob150 26130 0.00/0.12/0.26 44.2 0.00/0.19/0.37 44.4 0.00/0.01 254 0.05/0.05 93
pr152 73682 0.00/0.07/0.18 29.84 0.00/0.04/0.18 32.8 0.00/0.00 301 0.00/0.06 428
u159 42080 0.00/0.00/0.00 19.27 0.00/0.00/0.00 16.8 0.00/0.00 142 0.19/0.47 223
rat195 2323 0.26/0.60/1.21 69.89 0.22/0.71/1.03 74.4 1.16/1.24 666 1.10/1.44 464
d198 15780 0.02/0.13/0.22 95.96 0.01/0.06/0.18 111.2 0.11/0.14 1349 0.55/0.61 229
kroa200 29368 0.05/0.35/1.13 107.67 0.00/0.07/0.14 127.6 0.12/0.18 786 0.28/0.50 72
krob200 29437 0.07/0.51/0.81 103.13 0.04/0.26/0.43 115.4 0.00/0.04 1358 0.03/0.35 1459
ts225 126643 0.00/0.06/0.13 130.71 0.00/0.15/0.26 112 0.06/0.08 587 0.10/0.18 34
tsp225 3916 0.08/0.21/0.61 168.87 0.08/0.17/0.43 148.4 0.00/0.09 1046 0.40/0.56 673
pr226 80369 0.00/0.07/0.34 88.4 0.00/0.07/0.29 92 0.00/0.01 1252 0.04/0.31 840
gil262 2378 0.04/0.40/0.97 307.51 0.08/0.45/0.76 269 0.34/0.41 910 0.75/0.91 155
pr264 49135 0.00/0.09/0.26 117.11 0.00/0.05/0.19 168.8 0.08/0.14 1629 0.27/0.64 674
a280 2579 0.00/0.09/0.23 260.67 0.00/0.15/0.47 244.4 0.38/0.55 2400 0.38/0.86 1514
pr299 48191 0.09/0.24/0.35 308.27 0.07/0.34/0.72 304
lin318 42029 0.68/1.06/1.28 312.42 0.10/0.86/1.63 396.2 0.86/0.94 1718 0.35/0.64 1121
rd400 15281 0.31/0.90/1.28 1335.82 0.41/1.21/1.68 1084.2 0.87/0.98 6465 1.18/1.34 4581
pr439 107217 0.05/0.09/0.20 820.91 0.05/0.18/0.25 743.4 0.79/0.84 5583 1.24/1.75 6710
pcb442 50778 0.62/0.88/1.21 964.09 0.83/1.10/1.61 1042.6 1.52/1.58 2398 1.60/1.99 3219
d493 35002 0.39/0.54/0.69 1503.18 0.80/1.05/1.27 1323.6 1.32/1.54 9807 1.92/2.08 4924
u574 36905 0.56/1.21/1.69 1792.18 0.08/0.97/1.87 2056.8
rat575 6773 0.78/1.09/1.48 1812.96 1.21/1.36/1.62 1787.4 2.05/2.13 12624 1.49/1.63 11955
p654 34643 0.08/0.14/0.20 2089.49 0.10/0.18/0.25 2509.8 0.34/0.43 10879 0.72/1.10 13582
d657 48912 0.89/1.06/1.32 3582.84 0.80/1.12/1.50 3170.8 1.46/1.61 10066 1.42/1.50 14706
u724 41910 0.95/1.05/1.14 3219.8 1.09/1.16/1.31 4871 1.94/2.05 14398 1.85/2.26 24340
rat783 8806 1.14/1.39/1.91 4098.89 1.33/1.68/2.15 5166.8 1.94/2.02 7048 1.97/2.11 28120
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Abstract. This paper proposes a local search algorithm that makes
use of a complex neighborhood relation based on a hybridization with
a constructive heuristics for the classical resource-constrained project
scheduling problem (RCPSP).

We perform an experimental analysis to tune the parameters of our
algorithm and to compare it with a tabu search based on a combination
of neighborhood relations borrowed from the literature. Finally, we show
that our algorithm is also competitive with the ones reported in the
literature.

1 Introduction

The Resource-Constrained Project Scheduling Problem (RCPSP) is a classical
scheduling problem that has received a lot of attention from the community on
metaheuristics (see, e.g., [1]). In addition, a large and widely-accepted dataset
is available publicly for RCPSP [14], so that algorithms can be compared on a
common ground.

We propose a local search algorithm that makes use of a complex neigh-
borhood relation based on a hybridization with a constructive heuristics. More
precisely, at each iteration, we create a list of activities that are first removed
altogether from the schedule, and then reinserted one by one (in their order)
in the possible best position in the schedule. This neighborhood relation takes
inspiration from the good results that were achieved with a similar approach for
the TSP problem [3].

We perform an experimental analysis to understand the behavior of the
algorithm and to tune its parameters. In addition, we compare, in a statistically-
principled way, our algorithm with our implementation of a tabu search algo-
rithm based on a combination of neighborhood relations borrowed from the
literature. Finally we place our best results within the ones reported in the lit-
erature.

The outcome is that our algorithm performs favourably with the tabu search,
which was reported to be among the most competitive methods. In addition,
although for a definitive answer a more complete analysis is needed, we can
claim that our solver is competitive with those in the literature.
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The paper is organized as follows. In Section 2 we describe the RCPSP by
providing the mathematical formulation, describing the public broadly-accepted
dataset, and discussing related work on the problem. In Section 3 we illustrate
our main local search solver and the TS-based “competitor”, both in terms of
search space, neighborhood relations, and specific metaheuristics. In Section 4
we report the results of our experimental analysis and we make the comparisons.
Finally, in Section 5 we draw some conclusions and we discuss future work.

2 Resource-Constrained Project Scheduling Problem

There are two versions of the RCPSP, namely the single-mode and multi-mode
one. In the multi-mode version of the problem, an activity has to be performed
in one of the prescribed ways (modes) using specified amount of the resources,
whereas in the single-mode version there is exactly one execution mode for each
activity. In this paper we focus on the single-mode version of the problem.

2.1 Problem Formulation

The resource-constrained project scheduling problem (RCPSP) can be stated as
follows. Given are n activities a1, . . . , an and r renewable resources. A constant
amount Rk of units of resource k is available at any time. Activity ai must be
processed for pi time units; preemption is not allowed. During this time period
a constant amount of rik units of resource k is occupied. All the values Rk, pi,
and rik are non-negative integers.

Furthermore, there are precedence relations defined between activities. That
is, we are given a directed graph G = (V, E) with V = {1, . . . , n} such that if
(i, j) ∈ E then activity j cannot start before the end of activity i.

The objective is to determine starting times si for the activities ai, i = 1, . . . , n
in such a way that:

– at each time t the total resource demand is less than or equal to the resource
availability for each resource,

– the precedence constraints are fulfilled and,
– the makespan Cmax = maxn

i=1 ci, where ci = si + pi, is minimized.

As a generalization of the job-shop scheduling problem the RCPSP is NP-hard
in the strong sense.

Let us illustrate the above definitions with the example on Fig. 1 which is
taken from [22]. There are eleven activities and one single resource. The numbers
associated with each node give the length of the activity and the units of resource
it uses.

Clearly, a schedule is represented by the assignment of starting times of all
activities. However, it can also be represented indirectly by an activity list, which
is a permutation of all the activities.

An activity list is called feasible if it satisfies all precedence constraints, i.e.
each activity has all its network predecessors as predecessors in the list.
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Fig. 1. Activity network

It is easy to see that given a feasible activity list there is a unique way to
build a feasible schedule of minimal makespan, i.e., the so-called left-justified
one. This is simply obtained by placing the activities in the given order one by
one at the earliest possible starting time according to precedences and resource
constraints. It can also be shown that there always exists an activity list that
generates an optimal schedule [12].

Given the network depicted in Fig. 1, some of the (feasible) activity lists
are: λ = (1, 2, 3, 5, 7, 9, 8, 4, 6, 10, 11) α = (1, 2, 3, 7, 10, 4, 8, 5, 9, 6, 11) and β =
(1, 2, 3, 7, 4, 10, 8, 5, 6, 9, 11).

For example, the makespan of β is 18, as the activity list β gives rise to a
schedule depicted on Fig. 2.

Fig. 2. Feasible schedule for activity list β

2.2 Datasets

PSPLIB [14] is a large dataset for RCPSP that is composed of 480 instances
for each n = 30, 60, 90, and 120, for the single-mode version of the problem.
Virtually all papers dealing with RCPSP have considered this dataset as the
ground for the experimental analysis.

We investigated the performance of our algorithm on various PSPLIB in-
stances. In this work, we give preliminary results on the instances with 60 and
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90 activities. We have selected ten instances for n = 60 and ten for n = 90.
We selected the instances randomly, but only among the “hard” ones; that is,
instances for which the known best solution is not equal to the lower bound
reported.

2.3 Related Work

In recent years, many papers have been published on RCPSP, as reported for
example in the surveys by Özdamar and Ulusoy [17] and by Brucker et al [4]. A
great progress have been made in the solving procedures which take into account
two different approaches: optimal and heuristic.

The optimal approach includes methods such as 0-1 linear programming (Min-
gozzi et al [15]) and implicit enumeration with branch and bound (Brucker et al
[5]).

Nevertheless, the NP-hard nature of the problem makes it difficult to solve
large-size projects [2], in such a way that, in practice, the use of heuristics is nec-
essary. Therefore, besides exact algorithms many authors have developed heuris-
tics for the RCPSP as the only feasible method of handling practical RCPSP
instances (for a survey see the work by Kolisch and Hartmann [10,13]).

Among other, the one that most resembles our approach is the insertion tech-
nique [6], which is also based on insertion of activities in a schedule, but it is
not based on local search and it makes use of a different representation of the
search space. Furthermore this method inserts only one activity in one iteration,
whereas ours inserts multiple ones in the same iteration.

3 Local Search for RCPSP

In order to apply the local search paradigm we need to define the search space,
the cost function, the selection rule for the initial solution (Section 3.1), and
the neighborhood structure (Section 3.2). Finally, we present our metaheuristic
procedures (Section 3.3).

3.1 Search Space, Cost Function, and Initial Solution Construction

As already discussed in Section 2.1, an activity list represents a schedule. There-
fore, the search space is simply given by the set of possible activity lists, i.e.,
permutations of the set {1, . . . , n}. Among all activity lists only the feasible ones,
i.e. those satisfying all precedence constraints, are considered as possible search
states.

The cost function is simply given by the makespan of the schedule. In fact,
this is the sole objective, and we do not consider schedules that violate some
constraints.

The initial solution is constructed from scratch in a stepwise extension of the
partial schedule (this approach is thoroughly investigated also in [12]). In each
step we randomly choose one activity from the set of activities that have all
predecessors already scheduled and put it at the end of the partial activity list.
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3.2 Neighborhood Relations

We first introduce the new neighborhood relation that we call RaR (Remove and
Reinsert). Then we describe the literature-based one that we use for comparison.

The main idea of RaR is to remove a fixed number m of activities from the
schedule and insert them back into the schedule, where m is a parameter of the
method.

A move M is thus identified by a sequence of m activities M = {aM1 , aM2 , . . . ,-
aMm}, and it is executed in a state S leading to state S′ in the following way:

1. S′ = S – M // remove all activities in M from S
2. for each i = 1, . . . , m, add activity aMi to S′ in the following way:

2.1. search for the position j in which the makespan of S′ plus aMi

is minimized (breaking ties randomly)
2.2 insert activity aMi in position j in S′

For example, let m = 2 and consider the network of Fig. 1 and the state β cor-
responding to the schedule of Fig. 2, and the RaR move M = {5, 9}. Starting from
β, the activity list obtained in Step 1 is β(0) = 1, 2, 3, 7, 4, 10, 8, 6, 11. In Step 2, we
first reinsert the activity 5 in order to construct β(1) = 1, 2, 3, 5, 7, 4, 10, 8, 6, 11.
Activity 5 can only be reinserted after its predecessor 2, and before its succes-
sor 11 (not 9, because it was also deleted). Among the feasible positions, the one
chosen gives the minimal makespan. Second, after reinsertion of 9 we get β(2) =
1, 2, 3, 5, 7, 9, 4, 10, 8, 6, 11 with makespan 15 (see Fig. 3). ��
The other neighborhood relation that we use, which we call MS (for MultiShift),
is actually the set-union of two neighborhoods. For the first one, the main idea
is to move an activity i behind some other activity j, which is not in precedence
relation to i. In the literature this move is called shift move and it has been
introduced in [1]. More formally, a move M is identified by a pair {i, j} (with
i, j ∈ {1, . . . , n}), such that ai is placed after aj in the schedule L. The move
can be illustrated by

L = . . . i . . . u . . . j . . .⇒ L′ = . . . j i u . . .

where u is an activity that must be scheduled after i. The shift of i thus is accom-
panied by a set of other shifts so as to prevent to break precedence constraints.

Fig. 3. Schedule for activity list β(2)
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The second component of our neighborhood works in the reversed way. Instead
of moving activity i after j, we move activity j before i. Again, if necessary, we
also make accompanying set of shifts in order to keep all precedence constraints
satisfied.

These neighborhoods together are designed in such a way, that they make
room for some activities to be scheduled earlier and therefore possibly shorten
the makespan of the schedule.

3.3 Local Search Metaheuristics

The neighborhood RaR, for most of the values of m that we consider, is a large
neighborhood, and its exhaustive exploration turned out to be rather impracti-
cal. Therefore for this neighborhood, we resort to a simple hill-climbing strategy,
based on a randomized non-ascending selection. In details, at each iteration, we
draw a random move and compute its cost. If the move is improving or sideways
it is executed, otherwise the state is unchanged. The procedure stops after a
fixed number of iterations. We call this algorithm HC(RaR).

It is worth noticing that HC(RaR) can also be seen as a form of min-conflict
hill-climbing (MCHC) [16], since activities are selected at random, but then are
reinserted in the optimal way. In addition, like MCHC, it accepts sideways moved
(for diversification).

On the other hand, for the smaller neighborhood MS, more “aggressive”
metaheuristics seem to be more effective (based on preliminary experiments).
Therefore, we make use of a Tabu Search [9], with a dynamic-size tabu list to
implement a short term prohibition mechanism (called Robust Tabu Search in
[11]). In addition, we use the standard aspiration criterion and we search for
the next state by exploring the full neighborhood at each iteration. We call this
algorithm TS(MS).

4 Experimental Analysis

In order to determine how successful our new approach is, we first explain our
experimental settings (Section 4.1) and then experimental parameter tuning for
both methods (Section 4.2). Next we compare both methods with best parame-
ters for each method (Section 4.3) and finally we present comparison with meth-
ods and results reported in the literature (Section 4.4).

4.1 Experimental Setting

Experiments were performed on an Intel Pentium 4 (3.4 GHz) processor run-
ning Linux Suse v. 10. The algorithms have been coded in C++ exploiting
the framework EasyLocal++ [7], and the executables were obtained using the
GNU C/C++ compiler (v. 4.0.1). The statistical tests are performed using the
software environment for statistical computing R [20].

For HC(RaR) the stop criterion in our experiments is based on the number
of iterations, i.e. the number of feasible schedules generated. Given that the
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running time of a single iteration depends on m, in order to make a comparison
fair, we normalize the number of iterations so that the total running times are
approximately the same.

A typical number of iterations used in the literature (see [10,13]) is 5000. We
decided to grant 5000 iterations to the largest value of m and to augment the
others accordingly.

In particular, for the instances with 60 activities, we have tested HC(RaR)
with m = 2, . . . , 20, and the running times for m = 20 of 5000 iteration turned
out to be about 150s. All settings for both HC(RaR) and TS(MS) are made
in order to run for 150s per trial. For HC(RaR), this means that the number
of iterations allowed was larger for smaller m, reaching the highest value 23333
at m = 2. More precisely, we have used a heuristic formula for the number of
iterations such that the runs needed approximately the same time. The formula
is max iter = 10500/(m + 1)(1 + δ), where δ = (20−m)/36.

4.2 Experiments for Parameter Tuning for HC(RaR) and TS(MS)

Our first set of experiments aims at identifying the best value of m for HC(RaR).
Table 1 shows the results for the selected instances of size n = 60, for 30 trials
for each instance. The table reports the average deviation w.r.t. the lower bound
(obtained through the critical-path method [1]), and its standard deviation.

The outcome of the experiments show that the best results are obtained for
m = 7 (in bold). Note that for values around 7 the results are very close and the
standard deviation is relatively small for all of them.

Table 1. Results of HC(RaR) for m = 2, . . . , 20 with time limit 150s for n=60

m avg. diff. (%) std. dev.

2 11.668 1.0497
3 11.364 0.9448
4 11.340 1.0158
5 11.252 0.9548
6 11.130 0.9713
7 11.107 0.9636
8 11.122 0.8810
9 11.242 0.8473
10 11.294 0.9244
11 11.388 0.9131
12 11.583 0.8689
13 11.742 0.9826
14 11.867 0.9330
15 11.918 0.8784
16 12.152 0.9073
17 12.345 0.8866
18 12.598 0.9920
19 12.797 0.8610
20 12.880 0.9419
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Table 2. Results of TS(MS) for different tabu lengths for n = 60

Tabu length avg. diff. (%) std. dev.

5 10 14.526 1.3679
5 15 14.473 1.3468
5 20 14.470 1.4237

10 15 14.339 1.3703
10 20 14.587 1.4881
10 25 14.364 1.4140
10 30 14.453 1.4528
15 20 14.519 1.5012
15 30 14.370 1.3830
20 30 14.485 1.4563
20 40 14.435 1.5786

Table 3. Results of HC(RaR) for m = 2, . . . , 20 with time limit 210s for n = 90

m avg. diff. (%) std. dev.

2 13.398 1.4224
3 12.842 1.4536
4 12.661 1.3023
5 12.662 1.4095
6 12.721 1.3402
7 12.654 1.2768
8 12.782 1.3863
9 13.143 1.2843
10 13.283 1.3608
11 13.333 1.3961
12 13.516 1.3693
13 13.753 1.5144
14 13.922 1.3413
15 14.061 1.3176
16 14.306 1.3292
17 14.215 1.2872
18 14.478 1.3614
19 14.654 1.2652
20 14.956 1.3357

Similarly, Table 2 shows that the best configuration for TS(MS) is with tabu
length [10,15] for n = 60, although results for other tabu lengths are very similar.

The experiments for n = 90 presented in Table 3 show that the best results
are obtained when m = 7, although results for other m that are near 7 are also
very competitive.

The choice of a suitable value for m is clearly crucial for the behavior of any local
search based on RaR. In our preliminary work [19], we conjectured that the best
value of m is linearly dependent on n, and in particular it is about m = n/10. In the
experiments reported here, we provide a more statistically-principled comparison,
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and we show that the conjecture was not very precise, and, surprisingly, the best
choice is the fixed value m = 7 for both datasets.

To test this hypothesis we did a smaller experiment on the dataset with n =
120, which again seems to confirm that the best choice for m is 7.

4.3 Comparison Between HC(RaR) and TS(MS)

Table 4 shows a comparison between our two methods with problemset n = 60.
We compared only the best performing choice of parameters for both methods,
more precisely for HC(RaR) we used m = 7 and for TS(MS) we used tabu length
[10,15]. For each instance it shows the results for 30 trials in terms of: the best
value obtained, the average percentage difference w.r.t. the lower bound, and
the standard deviation. The last column shows the p-value for the Wilcoxon
test [23], which represents the confidence in the statistical difference of the two
sequences of the results, in favour of HC(RaR).

The last line shows the comparison for all instances together, using the paired
Wilcoxon test.

Table 4. Comparison between HC(RaR) and TS(MS), n = 60

HC(RaR) TS(MS)

Instance LB UB best avg. dev. (%) std. dev. best avg. dev. (%) std. dev. p

j605 3 75 80 81 9.16 0.9568 82 12.76 1.8740 2.848e-08
j605 10 79 81 81 5.11 1.0482 83 8.65 1.3437 3.727e-09
j609 4 79 87 88 15.27 1.3148 88 17.38 1.5902 4.176e-05
j609 5 77 85 88 14.29 0.8563 89 19.87 1.4410 2.928e-11
j6013 7 80 87 88 12.25 0.9451 91 16.33 1.1527 1.156e-10
j6025 5 86 98 98 16.01 0.8034 100 18.8 1.2671 1.095e-09
j6025 7 83 90 91 11.24 1.1925 93 14.9 1.3287 1.531e-09
j6029 5 102 110 112 11.86 1.2476 112 14.71 1.8073 1.274e-07
j6029 8 96 103 104 9.48 0.7895 106 12.15 1.2472 3.401e-10
j6037 8 88 93 93 6.4 0.4818 94 7.84 0.6506 3.916e-09

ALL – – – 11.107 0.9636 – 14.339 1.3702 4.193e-06

Table 4 shows that HC(RaR) is clearly superior to TS(MS) in means of av-
erage deviation, namely mean of the average deviations on all the instances is
11.10% against 14.33%. Also mean of the standard deviations for HC(RaR) is
significantly better than TS(MS), and the p values are very close to 0, showing
a confidence in the statistical difference of almost 100%.

Table 5 presents the same data for n = 90, and it shows similar results.

4.4 Comparison with Previous Results

In [13] experimental results of almost all the state-of-the-art algorithms are re-
ported. Comparison is made with number of iterations limited to i = 1000, 5000
and 50000. Since we have high running times, we will compare our method with
results reported for 50000 iterations.
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Table 5. Comparison between HC(RaR) and TS(MS) for n = 90

HC(RaR) TS(MS)

Instance LB UB best avg. dev. (%) std. dev. best avg. dev. (%) std. dev. p

j905 3 82 87 90 12.68 1.2 91 16.75 1.6519 3.493e-09
j905 5 107 111 114 8.72 1.1926 118 13.43 2.714 6.515e-11
j909 3 97 102 106 11.96 1.2543 111 17.8 1.9482 3.343e-11
j909 7 102 109 113 13.27 1.2579 117 19.02 1.7814 3.673e-11
j9013 3 104 108 113 10.29 0.8226 116 14.2 1.5638 3.076e-11
j9021 6 95 106 108 17.79 1.8321 111 20.56 1.9619 8.481e-06
j9029 5 114 121 125 11.78 1.0858 127 15.5 1.66 2.808e-10
j9037 2 103 115 116 15.08 1.384 119 18.71 1.9137 1.394e-09
j9037 7 112 123 123 11.85 1.34 126 15.98 2.0712 1.816e-10
j9045 7 127 136 140 13.12 1.3984 145 17.11 1.7114 5.869e-11

ALL – – – 12.654 1.2767 – 16.906 1.8977 8.487e-07

Table 6. Comparison between the best methods for solving RCPSP, n = 60

Method Author avg. dev.(%)

Scatter search Debels et al 10.71
GA-hybrid Valls et al. 10.73

GA, TS-path relinking Kochetov and Stolyar 10.74
GA-FBI Valls et al. 10.74

GA-forw.-backw., FBI Alcaraz et al. 10.84
HC(RaR) Pesek, Schaerf, Žerovnik 11.10

GA-self-adapting Hartmann 11.21
GA-activity list Hartmann 11.23

Sampling-LFT, FBI Tormos and Lova 11.36
TS-activity list Nonobe and Ibaraki 11.58

We should however remark that, at this stage, a fair comparison is not possible
for two reasons: First, in the most relevant literature, results are reported only
as the average on all 480 instances, and we haven’t completed such a massive
computation yet. Secondly, the computing power granted to the solvers is always
expressed only in terms of visited schedules, and it is not clear how this metric
applies to our solver. The most straightforward application is by granting this
number of iteration to our solvers, but we have to admit that this would be
too biased on our side, as our iteration is computationally much more expensive
than the equivalent step in the literature (in some cases even more than 2 orders
of magnitude).

Having in mind these limits of the comparison, we summarize the current
results in Table 6, which shows the best ten algorithms reported (rest of the
algorithms reported is in [13]). In first column shows the method used, then
the author of the method and in the last column the average deviation from the
critical path lower bound.

We can assert that our results are well in-line with the best solvers, also having
in mind that it regards only a set of “hard” instances (which are the minority),
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whereas the others are averaged on all of them, but, on the other hand, we have
much longer runs.

5 Conclusions and Future Work

We have proposed a local search solver for RCPSP based on a large neighbor-
hood coming from a hybridization with a constructive heuristic. In our experi-
mental analysis we have identified the best parameter setting for the solver, and
compared it with our implementation, using the same technologies, of a state-of-
the-art solver, namely a tabu search based on a classical neighborhood relation.
The results, although preliminary, are quite encouraging.

Obviously, the first future work will be to perform a comprehensive analysis
on all PSPLIB instances, so as to place the results within the relevant literature,
by identifying a common ground of comparison that takes into account both
results and running times.

We also plan to find new ways to improve our solver on the various levels of
intervention: metaheuristic strategy, neighborhood exploration, and implemen-
tation.

Finally, in this paper we focused on the single-mode problem, whereas the
multi mode problem is actually more natural and describes real life problems
more accurately. Therefore, we plan to work on this other version, because we
believe that our approach can be adapted to it and also provide good results.
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Abstract. This paper deals with the Permutation Flow Shop scheduling
problem with the objective of minimizing total flow time, and therefore
reducing in-process inventory. A new hybrid metaheuristic Genetic Algo-
rithm - Cluster Search is proposed for the scheduling problem solution.
The performance of the proposed method is evaluated and results are
compared with the best reported in the literature. Experimental tests
show the new method superiority for the test problems set, regarding
the solution quality.

1 Introduction

This paper deals with Permutation Flow Shop scheduling problems, which con-
sists of finding a sequence for the jobs that optimises some schedule performance
measure. Usually, such measures are the maximum completion time (makespan),
and the total flowtime. As it is well known, the first measure is associated with
an efficient utilization of resources, and the second one with a faster response to
job processing, therefore reducing in-process inventory. In this paper we intro-
duce a hybrid meta-heuristic method with the objective of minimizing the total
flowtime.

This production scheduling problem is NP-complete [1,2], therefore the search
for an optimal solution is of more theoretical than practical importance.

In the last ten years a number of heuristic methods have been introduced with
the objective of minimizing total flowtime, or equivalently the mean flowtime
in permutation flow shops. These heuristic methods can be divided into two
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main classes: construction methods and improvement methods. The literature
on construction methods includes the heuristics proposed by Ahmadi and Bagchi
[3], Rajendran and Chaudhuri [4], Rajendran [5], Ho [6], Wang et al. [7], Woo
and Yim [8], Liu and Reeves [9], Allahverdi and Aldowaisan [10], Framinan and
Leisten [11], Framinan et al. [12], Li et al. [13] and Nagano and Moccellin [14].

Improvement methods such as ant-colony optimization algorithm proposed by
Rajendran and Ziegler [15] and swarm optimization algorithm proposed by Tas-
getiren et al. [16], start from an initial permutation, which is usually generated
by a construction method, and then iteratively generate a sequence of improved
permutations. It is obvious that improvement methods generate significantly
better solutions than construction ones.

Rajendran and Ziegler [15] introduce two heuristics. The first algorithm ex-
tends the ideas of the ant-colony algorithm by Stuetzle [17], called max-min
ant system (MMAS), by incorporating the summation rule suggested by Merkle
and Middendorf [18] and a new proposed local search technique. The second
ant-colony algorithm is newly developed. These ant-colony algorithms were ap-
plied to 90 benchmark problems taken from Taillard [19]. Considering the min-
imization of makespan the comparison shows that the two proposed ant-colony
algorithms perform better, on an average, than the MMAS. Subsequently, by
considering the objective of minimizing the total flowtime of jobs, a comparison
of solutions yielded by the proposed ant-colony algorithms with the best heuris-
tic solutions known for the benchmark problems, as published in an extensive
study by Liu and Reeves [9], is carried out. The comparison shows that the pro-
posed ant-colony algorithms are clearly superior to the heuristics analyzed by
Liu and Reeves. For 83 out of 90 problems considered, better solutions have been
found by the two proposed ant-colony algorithms, as compared to the solutions
reported by Liu and Reeves [9].

Like many optimization problems, scheduling are commonly approached by
evolutionary techniques. Cotta and Fernandez [20] applied memetic algorithms
to planning, scheduling and timetabling, and Kleeman and Lamont [21] have
studied multi-objective evolutionary algorithms (MOEA) with fixed and variable
chromosome length applied to the flow-shop and job-shop problems.

Recently Tasgetiren et al. [16] presented a particle swarm optimization algo-
rithm (PSO) to solve the permutation flow shop sequencing problem with the
objectives of minimizing makespan and the total flowtime of jobs. For this pur-
pose, a heuristic rule called the smallest position value (SPV) borrowed from the
random key representation of Bean [22] was developed to enable the continuous
particle swarm optimization algorithm to be applied to all classes of sequencing
problems. In addition, a very efficient local search, called variable neighborhood
search (VNS), was embedded in the PSO algorithm to solve the well known
benchmark suites in the literature. The PSO algorithm was applied to both the
90 benchmark instances provided by Taillard [19], and the 14,000 random, nar-
row random and structured benchmark instances provided by Watson et al. [23].
For makespan criterion, the solution quality was evaluated according to the best
known solutions provided either by Taillard [19], or Watson et al. [23]. The total
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flowtime criterion was evaluated with the best known solutions provided by Liu
and Reeves [9], and Rajendran and Ziegler [15]. For the total flowtime criterion,
57 out of the 90 best known solutions reported by Liu and Reeves [9], and Rajen-
dran and Ziegler [15] were improved whereas for the makespan criterion, 195 out
of the 800 best known solutions for the random and narrow random problems
reported by Watson et al. [23] were improved by the VNS version of the PSO
algorithm.

Based on the literature examination we have made, the aforementioned meta-
heuristic PSO-VNS presented by Tasgetiren et al. [16] yields the best solutions
for total flowtime minimization in a permutation flow shop.

2 Clustering Search

The metaheuristic Clustering Search (CS), proposed by Oliveira and Lorena
[24,25], consists of a solution clustering process to detect supposedly promising
regions in the search space. The objective of the detection of these regions as
soon as possible is to adapt the search strategy. A region can be seen as a search
subspace defined by a neighborhood relation.

The CS has an iterative clustering process, simultaneously executed with a
heuristic, and tries to identify solution clusters that deserve special interest.
The regions defined by these clusters must be explored, as soon as they are
detected, by problem specific local search procedures. The expected result of
more rational use of local search is convergence improvement associated with
reduction of computational effort.

CS tries to locate promising regions by using clusters to represent these re-
gions. A cluster is defined by a triple G = (C, r, β) where C, r and β are,
respectively, the center, the radius of a search region around the center, and a
search strategy associated with the cluster.

The center C is a solution that represents the cluster, identify its location
in the search space, and can be changed along the iterative process. Initially
the centers can be obtained randomly, and progressively tend to move to more
promising points in the search space. The radius r defines the maximum distance
from the center to consider a solution being inside the cluster. For example, the
radius r could be defined as the number moves to change a solution into another.
The CS admits a solution to be inside of more than one cluster. The strategy β
is a procedure to intensify the search, in which existing solutions interact with
each other to create new ones.

The CS consists of four components, conceptually independent, with different
attributions: a metaheuristic (ME), an iterative clustering process (IC), a clus-
ter analyzer (CA), and a local optimization algorithm (LO). Figure 1 shows a
representation of the four components, the search space and the clusters centers.

The ME component works as a full time iterative solution generator. The
algorithm is independently executed from the other CS components, and must
be able to continuously generate solutions for the clustering process. Simultane-
ously, the clusters are maintained as containers for these solutions. This process
works as a loop in which solutions are generated along the iterations.
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Fig. 1. Clustering Search Conceptual Diagram

The objective of the IC component is to associate similar solutions to form
a cluster, keeping a representative one of them as the cluster center. The IC is
implemented as an online process where the clusters are feed with the solutions
produced by the ME. A maximum number of clusters is previously defined to
avoid unlimited cluster generation. A distance metric must be defined also pre-
viously to evaluate solutions similarity for the clustering process. Each solution
received by IC is inserted into the cluster having the center most similar to it,
causing a perturbation in this center. This perturbation is called assimilation
and consists of the center update according to the inserted solution.

The CA component provides an analysis of each cluster, at regular time in-
tervals, indicating probable promising clusters. The so called cluster density λi

measures the i-th cluster activity. For simplicity, λi can be the cluster’s number
of assimilated solutions. When λi reach some threshold, meaning that ME has
produced a predominant information model, the cluster must be more intensively
investigated to accelerate its convergence to better search space regions. CA is
also responsible for the removal of low density clusters, allowing new and better
clusters to be created, while preserving the most active clusters. The clusters
removal does not interfere with the set of solutions being produced by ME, as
they are kept in a separate structure.

Finally, the LO component is a local search module that provides more inten-
sive exploration of promising regions represented by active clusters. This process
runs after CA has determined a highly active cluster. The local search corre-
sponds to the β element that defines the cluster and is a problem specific local
search procedure.

3 Evolutionary Clustering for the Permutation Flow
Shop Problem

This research has used a metaheuristic called Evolutionary Clustering Search
(ECS) proposed by Oliveira and Lorena [24,25] that combines Genetic
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Algorithms (GA) and Custering Search, and has applied it to the Permutation
Flow Shop problem. The ECS uses a GA to implement the ME component of
the CS and generate solutions that allow the exploration of promising regions by
the other components of CS. A pseudo-code representation of the ECS is shown
in Figure 2.

Procedure ECS-FS()

Begin

Initialize population P;

Initialize clusters set C;

While (stop condition == false) do Begin

While (i < new_individuals) do Begin

parent1 = Selected from best 40% of P;

parent2 = Selected from the whole P;

offspring = Crossover(parent1, parent2);

Local_Search_LS1(offspring) with 60% probability;

If (Insert_into_P(offspring))

Assimilate_or_create_cluster(offspring, C);

i = i + 1;

End;

For each cluster c in C

If (High_assimilation(c))

Local_Search_LS2(c);

End;

End;

Fig. 2. Pseudo-code for the ECS algorithm

As ECS has presented good performance in previous applications, and con-
sidering the accelerated convergence provided by CS when compared with pure,
non hybrid, algorithms, the aim of this work was to attempt to beat the best
results recently produced and found in the literature, even with larger computer
times, characteristic of evolutionary processes. Seeking originality, this was an-
other reason to apply CS in this research.

The Evolutionary Clustering Search for Flow Shop (ECS-FS) presented in this
work has some modifications from the original CS general concept presented in
the previous section.

As the quality of the individuals in the initial population is important for
the GA performance, to ensure this quality, the population initialization was
done with a variation of the method known as NEH, presented by Nawaz et
al. [26]. The original form of NEH initially sort a set of n tasks according to
non-descending values of the sum of task processing times by all machines. The
two first tasks in the sorted sequence are scheduled to minimize the partial flow
time. The remaining tasks are then sequentially inserted into the schedule in the
position that minimizes the partial flow time.

The chromosome representation used in the GA was a n element vector, one
element for each task, storing the position of that task in the solution schedule.
After several tests, the population size was fixed in 500 individuals to make room
for good individuals produced by NEH and its variation, together with randomly
generated individuals to provide diversity.
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The very fist individual inserted into the initial population was generated by
the NEH procedure. Part of the other individuals was generated by a variation
of the NEH in which the two tasks from the sorted sequence to be first scheduled
were randomly chosen from the whole sequence. The rest of the sequence was
then scheduled the same way as the original NEH.

To ensure some degree of diversity in the initial population, the maximum
number of individuals generated by the modified NEH was given by

min
(

n ∗ (n− 1)
4

,
500
2

)
, (1)

and the remain part of the initial population was filled with randomly generated
schedules.

The evaluation of the population individuals was made by the minimization of
the total flow time. The individual insertion routine kept the population sorted,
and the best individual, the one with the lowest total flow time, occupied the
first position in the population. The insertion routine was also responsible for
maintain only one copy of each individual in the population.

A cluster set initialization process was created to take advantage of the good
individuals in the GA initial population. This routine scanned the population,
from the best individual to the worst, creating new clusters or assimilating the
individuals into clusters already created. A new cluster was created when the
distance from the individual to the center of any cluster was larger than r =
0.85 ∗ n, and the individual was used to represent the center of new cluster.
Otherwise, the individual was assimilated by the cluster with the closest center.
The distance measure from an individual to the cluster center was taken as the
number of swaps necessary to transform the individual into the cluster center.
Starting from the very first, each element of the individual was compared to
its equivalent in the cluster center, at the same position. When non coincident
elements were found the rest of the individual chromosome was scanned to find
the same element found in the cluster center, and make a swap. At the end,
the individual was identical to the cluster center, and the number of swaps
was considered as a distance measure. The clusters initialization process ended
when the whole population was scanned or when a maximum of 200 clusters
were created. Both the cluster radius and the maximum number of clusters are
parameters which values were chosen after several tests, with the objective to
work with all problem classes used for tests.

The assimilation of an individual by a cluster was based on the Path Relinking
procedure presented by Glover [27]. Starting from the individual chromosome,
successive swaps were made until the chromosome became identical to the cluster
center. The pair of genes chosen to swap was the one that more reduced, or less
increased, the chromosome total flow time. At each swap the new chromosome
configuration was evaluated. At the end of the transformation, the cluster center
was moved to (replaced by) the individual, or the intermediary chromosome, that
has the best evaluation better than the current center. If no such improvement
was possible, the cluster center remains the same.
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At each iteration of the GA, 50 new individuals were created and possibly
inserted into the population. The stop condition used was the maximum of 100
iterations or 20 consecutive iterations with no new individuals being inserted, as
the population could have one single copy of each individual.

The new individual generation was made by randomly selecting two parents,
one from the best 40% of the population, called the base parent, and the other
from the entire population, called the guide parent. A crossover process known
as Block Order Crossove (BOX), presented by Syswerda [28], was then applied
to both parents, generating a single offspring by copying blocks of genes from
the parents. In this work the offspring was generated with 50% of its genes
coming from each parent. Several other recombination operators are studied and
empirically evaluated by Cotta and Troya [29]. Investigation regarding position-
oriented recombination operators are also possible in further studies. Figure 3
illustrates the BOX crossover.

Fig. 3. BOX Crossover

The number of new individuals created at each iteration, the stop condition,
the part of the population from which comes the base parent for crossover, and
contribution of each parent in the crossover process are all parameters which
values were obtained after several tests.

After the crossover, the offspring had a probability of 60% to be improved by
a local search procedure called LS1, shown in Figure 4.

This procedure used two neighborhood types: permutation and insertion. The
permutation neighborhood around an individual was obtained by swapping ev-
ery possible pair of chromosome genes, producing n*(n-1)/2 different individuals.
The insertion neighborhood was obtained by removing every gene from its po-
sition, and inserting it in each other position in the chromosome, producing
n*(n-1) different individuals.

The new individual was then inserted into the population in the position
relative to its evaluation, shifting ahead the subsequent part of the population,
and therefore removing the last, and worst, individual.

The successfully inserted individuals were then processed by the IC component
of ECS-FS. This procedure tried to find the cluster having the closest center
and of which radius r the individual was within. When such cluster could found,
the individual was assimilated, otherwise a new cluster was created having the
individual as its center. New clusters were created only if the ECS-FS had not
reached the 200 clusters limit. Tests have shown that the number of cluster tends
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Procedure LS1(current_solution)

Begin

cs = current_solution;

stop = false;

While (stop == false) do Begin

P = Permutation_neighborhood(cs);

sp = First s in P that eval(s) < eval(cs), or eval(s) < eval(t) for all t in P;

I = Insertion_neighborhood(cs);

si = First s in I that eval(s) < eval(cs), or eval(s) < eval(t) for all t in I;

If (eval(sp) < min(eval(si), eval(cs))) then

cs = sp;

else

If (eval(si) < min(eval(sp), eval(cs))) then

cs = si;

else

stop = true;

End;

Return cs;

End

Fig. 4. Pseudo-code for the LS1 Local Search Procedure

to increase at very first ECS iterations, and slowly decrease as iterations continue
and the ECS removes the less active clusters.

After the generation of new individuals, its improvement and insertion into
the population, the ECS-FS executed its CA component. This cluster analysis
procedure performed two tasks: remove the clusters that had no assimilations
in the last 5 iterations, and take every cluster that had any assimilation in the
current iteration and ran it through a local optimization procedure, called LS2
and shown in Figure 5, corresponding to the LO component of ECS-FS.

Again, the probability with which an offspring ran trough local search before
being inserted into the population and the number of iterations without assim-
ilation used to delete clusters was parameters which values were chosen after
several tests.

Along the ECS-FS processing the best cluster was kept saved. At the end of
the ECS-FS execution, the center of the best cluster found so far was taken as
the final solution produced by the algorithm.

4 Computational Experiments

The performance evaluation of the proposed hybrid heuristic method ECS-FS,
was made through computational experiments using the Taillard [19] test prob-
lems. These problem are divided into n tasks and m machines sets, each set
having ten instances. Results were compared with those reported in the works
of Liu and Reeves [9], Rajendran and Ziegler [15], Li et al. [13] and Tasgetiren
et al. [16].

For this work, the ECS-FS code was written in the C programming language
and was executed on a Pentium IV, 3.0 GHz, 1 GByte RAM personal computer.

Two statistic measures were used to performance evaluation: the success rate
and the average relative deviation. The first is given by the ratio between the
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Procedure LS2(current_solution)

Begin

cs = current_solution;

stop = false;

While (stop == false) do Begin

I = Insertion_neighborhood(cs);

si = First s in I that eval(s) < eval(cs), or eval(s) < eval(t) for all t in I;

If (eval(si) < eval(cs)) then Begin

cs = si;

P = Permutation_neighborhood(cs);

sp = First s in P that eval(s) < eval(cs), or eval(s) < eval(t) for all t in P;

If (eval(sp) < eval(cs)) then

cs = sp;

End else Begin

Pnh = Permutation_neighborhood(cs);

sp = Scan Pnh until sp is better than cs, or sp is the best in Pnh;

If (eval(sp) < eval(cs))

cs = sp;

else

stop = true;

End;

End;

Return cs;

End

Fig. 5. Pseudo-code for the LS2 Local Search Procedure

number of problems for which a method produced the minimum total flow time
given by all compared methods, and the number of problems solved in a problem
set. The second shows the deviation obtained by a method h from the minimum
total flow time as above, and is given by

RDh =
(

Fh − F∗
F∗

)
(2)

where Fh is the total flow time given by the method h, and F∗ is the minimum
total flow time given by all compared methods, for a given test problem.

5 Analysis of Results

The ECS-FS performance was evaluated comparing its results with the two ant
colony based algorithms (M-MMAS and PACO) shown by Rajendran and Ziegler
[15], and the particle swarm method (PSO) shown by Tasgetiren et al. [16].

Nine test problems classes were considered, each one having ten instances.
The classes were defined according to the number of tasks n being equal to 20,
50 and 100, and for each one of these values, the number of machines m being
equal to 5, 10 and 20.

Table 1 presents the best solution obtained by the methods for each instance
and shows the superiority of ECS-FS to the others for the test problems. The
listed results of ECS-FS are the best out of 10 repeats. For a total of 90 instances
the ECS-FS produced equal or better solutions for 82 of them, corresponding



78 G. Ribeiro Filho, M.S. Nagano, and L.A.N. Lorena

Table 1. New Best Known solution for Taillard’s benchmarks for Flowtime minimisa-
tion in Permutation Flow Shop

n m M − MMAS PACO PSOvns ECS − FS n m M − MMAS PACO PSOvns ECS − FS

20 5 14056 14056 14033 14033 50 20 127348 126962 128622 126315
15151 15214 15151 15151 121208 121098 122173 119502
13416 13403 13301 13301 118051 117524 118719 116910
15486 15505 15447 15447 123061 122807 123028 121031
13529 13529 13529 13529 119920 119221 121202 118914
13139 13123 13123 13123 122369 122262 123217 121087
13559 13674 13548 13548 125609 125351 125586 123340
13968 14042 13948 13948 124543 124374 125714 123005
14317 14383 14295 14295 124059 123646 124932 122203
12968 13021 12943 12943 126582 125767 126311 124785

20 10 20980 20958 20911 20911 100 5 257025 257886 254762 254911
22440 22591 22440 22440 246612 246326 245315 243943
19833 19968 19833 19833 240537 241271 239777 239002
18724 18769 18710 18710 230480 230376 228872 228888
18644 18749 18641 18641 243013 243457 242245 241659
19245 19245 19249 19245 236225 236409 234082 234172
18376 18377 18363 18363 243935 243854 242122 241753
20241 20377 20241 20241 234813 234579 232755 232315
20330 20330 20330 20330 252384 253325 249959 249608
21320 21323 21320 21320 246261 246750 244275 244210

20 20 33623 33623 34975 33623 100 10 305004 305376 303142 301176
31604 31597 32659 31587 279094 278921 277109 276902
33920 34130 34594 33920 297177 294239 292465 290844
31698 31753 32716 31661 306994 306739 304676 304377
34593 34642 35455 34557 290493 289676 288242 287545
32637 32594 33530 32564 276449 275932 272790 272635
33038 32922 33733 32922 286545 284846 282440 282381
32444 32533 33008 32412 297454 297400 293572 294119
33625 33623 34446 33600 309664 307043 305605 304964
32317 32317 33281 32262 296869 297182 295173 294362

50 5 65768 65546 65058 64838 100 20 373756 372630 374351 371391
68828 68485 68298 68159 383614 381124 379792 376383
64166 64149 63577 63453 380112 379135 378174 374599
69113 69359 68571 68310 380201 380765 380899 378550
70331 70154 69698 69477 377268 379064 376187 374426
67563 67664 67138 66902 381510 380464 379248 377567
67014 66600 66338 66355 381963 382015 380912 378367
64863 65123 64638 64471 393617 393075 392315 389680
63735 63483 63227 63068 385478 380359 382212 380152
70256 69831 69195 69092 387948 388060 386013 383928

50 10 89599 88942 88031 87683
83612 84549 83624 83535
81655 81338 80609 80365
87924 88014 87053 86934
88826 87801 87263 86865
88394 88269 87255 86969
90686 89984 89259 89304
88595 88281 87192 87316
86975 86995 86102 86213
89470 89238 88631 88534

50 20 127348 126962 128622 126315
121208 121098 122173 119502
118051 117524 118719 116910
123061 122807 123028 121031
119920 119221 121202 118914
122369 122262 123217 121087
125609 125351 125586 123340
124543 124374 125714 123005
124059 123646 124932 122203
126582 125767 126311 124785
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to 91.1%, and 59 solutions (65.5%) were inedited, better than the previous best
found in the literaure.

Table 2 presents success rates for problems classes and shows that the ECS-
FS had its success rate varying from 70% to 100%. This table shows also that
the difference from the ECS-FS average relative deviation to the other method
deviation is emphasized, reinforcing the proposed method superiority.

The quality of the initial population individuals, allied to diversity, and the
performance of the local search routines, can be considered key factors for the
quality of the final solutions.

Average processing time had a large variation from 8.62 seconds for the small-
est problems class, with 20 tasks and 5 machines, to 7 hours and 39 minutes for
the largest problems class used in this work, with 100 tasks and 20 machines.

Table 2. Success Rate (a) and Average Relative Deviation (b)

n m M − MMAS PACO PSOvns ECS − FS

20 5 20a 20 100 100

0.1975b 0.4544 0.0000 0.0000
20 10 60 20 90 100

0.0492 0.3235 0.0021 0.0000
20 20 20 20 0 100

0.1195 0.1892 2.8278 0.0000
50 5 0 0 10 90

1.1302 0.9450 0.2452 0.0026
50 10 0 0 30 70

1.4196 1.1569 0.1841 0.0322
50 20 0 0 0 100

1.2852 0.9780 1.8421 0.0000
100 5 0 0 30 70

0.8733 0.9921 0.1638 0.0104
100 10 0 0 10 90

1.2714 0.9834 0.2189 0.0186
100 20 0 0 0 100

1.0678 0.8361 0.6627 0.0000

6 Conclusion

The main objective of this work was apply CS to the Permutation Flow Shop
Scheduling Problem of original and inedited form. Experimental results pre-
sented in the tables have shown that the ECS-FS method had superior per-
formance regarding success rate and average relative deviation, compared with
the best results found in the literature for the considered Flow Shop test prob-
lems, using the in-process inventory reduction, or minimization of the total flow
time, as the performance measure. The computational effort was acceptable for
practical applications.

The classic optimization problem of task schedule in Flow Shop has been the
object of intense research in the last 50 years. For practical applications this
problem may be considered already solved, although, because of its complexity
it still remains as a target for the search for heuristic and metaheuristic methods
with better efficiency and solution quality, taking into account that the problem
is NP-hard.
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The research related in this paper was motivated by the above considerations,
and have tried to rescue the essential characteristics of metaheuristic methods,
balance between solution quality and computational efficiency, simplicity and
implementation easiness.
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Abstract. Optimization in sports is a field of increasing interest. A
novel problem in sports management is the Referee Assignment Pro-
blem, in which a limited number of referees with different qualifications
and availabilities should be assigned to a set of games already sched-
uled. We extend and improve a previous three-phase approach for this
problem, based on a constructive heuristic, a repair heuristic to make
the initial solutions feasible, and an ILS improvement heuristic. We pro-
pose a new constructive algorithm based on a greedy criterion to build
initial solutions. Furthermore, we develop a hybridization strategy in
which a mixed integer programming exact algorithm replaces the orig-
inal neighborhood-based local search within the ILS heuristic. Compu-
tational experiments are performed for large realistic instances. The use
of time-to-target-solution-value plots is emphasized in the evaluation of
the numerical results, illustrating the efficiency and the robustness of
the new approach. The proposed hybridization of MIP with local search
can be extended to other metaheuristics and applications, opening a new
research avenue to more robust algorithms.

1 Introduction

Optimization in sports is a field of increasing interest and different optimization
techniques have been applied to solve problems arising from sports scheduling
and management, see e.g. Ribeiro and Urrutia [27], Easton et al. [8], and Ras-
mussen and Trick [22] for some state-of-the-art reviews. Playoff elimination [28],
the traveling tournament problem [2,9,29], and the scheduling of a college bas-
ketball conference [21] are some examples of optimization problems in sports.
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A novel problem in sports management is the Referee Assignment Problem
(RAP) [6,7]. Sport games are regulated by rules that depend on the sport and
tournament. The officiating crew is a group of referees that is responsible to
ensure that all rules are respected in a game. The number of referees compound-
ing a crew may vary, depending on the sport, league, and tournament: soccer
games usually require three referees, while basketball games require two. Each
member of an officiating crew fills a refereeing position in a game. For example,
in a regular soccer game, there are one head umpire and two side judges, total-
izing three refereeing positions to be filled with referees. In some applications,
managers make pre-assignments to satisfy some specific requirements. The ref-
eree assignment problem consists in assigning referees to the empty refereeing
positions (not yet assigned) for all games of a league or tournament.

This problem appears in regional amateur leagues in the United States. Am-
ateur leagues of several sports, such as baseball, basketball and soccer, have
hundreds of games every weekend in different divisions. As an example, in the
MOSA (Monmouth & Ocean Counties Soccer Association) league, New Jersey,
boys and girls of ages 8 to 18 make up six divisions per age and gender group
with six teams per division, totalizing 396 games every Sunday. In a single league
in California there might be up to 500 soccer games in a weekend, to be refereed
by hundreds of certified referees.

Referee assignment is subject to a number of criteria. Games in higher divi-
sions may require higher-skilled referees. Due to the shortage of certified referees,
each of them may officiate several games in the same day. Some referees may
have to travel between facilities and the traveling times have to be considered.
Some players or their relatives may also act as referees and a natural constraint
is that a referee cannot officiate a game in which he/she or a relative is scheduled
to play. In some applications, each referee declares the target number of games
he/she is willing to officiate and the objective consists in minimizing the sum
over all referees of the absolute value of the difference between the target and the
actual number of games assigned to each referee. In case the referees are able
to officiate in different facilities, some objectives may be the minimization of
the total number of inter-facility travels, the minimization of the total traveling
time, or the minimization of the idle times between consecutive games assigned
to the same referee. Tournament organizers may also want referee assignments
matching preferences regarding the facilities, divisions, and time slots where the
referees officiate.

Referee assignment problems in other contexts have been addressed in [4,10]
[11,30]. In the next section, we state the variant of the referee assignment problem
considered in this work, whose decision version is NP-complete [7]. Section 3 de-
scribes some improvements to the three-phase solution strategy proposed in [7]
(a constructive procedure, a repair heuristic to make solutions feasible, and an
ILS improvement heuristic): a new constructive heuristic and a mixed-integer
programming (MIP) local search strategy. Numerical results illustrating the im-
provements observed with these extensions are presented in Section 4. Conclud-
ing remarks are drawn in the last section.
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2 Problem Statement

We consider the general problem, in which each game has a number of refereeing
positions to be assigned to referees. The games are previously scheduled and the
facilities and time slots for each game are known beforehand. In our approach,
referees are assigned to empty refereeing positions, not to games. This allows not
only to handle referee assignment problems in sports requiring different number
of referees, but also in tournaments where different games of the same sport may
need different numbers of referees due to the game division or importance. Games
with pre-assigned referees to some refereeing positions can also be handled by this
approach. Each refereeing position to be filled by a referee is called a refereeing
slot.

Let S = {1, . . . , n} be the set of refereeing slots. Each refereeing slot j ∈ S
has to be filled by a referee with a minimum skill level qj , which is previously
determined and often related to the tournament division. Usually, a division
corresponds to a set of teams formed by players under a certain age and with
the same gender, e.g. boys under 16 years old. Let R = {1, . . . , m} be the set of
referees, represented by their indices. Each referee i ∈ R has a certain skill level,
denoted by pi, defining the refereeing slots in which he/she can officiate. Referees
may declare their unavailability to officiate at certain time slots. Furthermore,
each referee i ∈ R establishes Mi as the maximum number of games he/she
is able to officiate and Ti as the target number of games he/she is willing to
officiate. Travels are not allowed, i.e. referees that officiate more than one game
in the same day must be assigned to games that take place at the same facility.

Several objectives can be optimized. We consider the minimization of the sum
over all referees of the absolute value of the difference between the target and the
actual number of games assigned to each referee. Briefly, the referee assignment
problem consists in assigning referees to all refereeing slots associated to games
scheduled to a given time interval (typically, a day or a weekend), minimizing
the objective function described above and satisfying the set of hard constraints
listed below:

(a) all refereeing slots must be filled for all games;
(b) referees cannot officiate more than one game in overlapping time slots;
(c) referees cannot officiate games in time slots where they are unavailable;
(d) referees must meet the minimum skill level established for each refereeing

slot;
(e) referees cannot officiate more than a given maximum number of games; and
(f) each referee can officiate in only one facility.

3 Solution Approach and Extensions

This work proposes some extensions to the three-phase heuristic approach pro-
posed by Duarte et al. [7] to solve the referee assignment problem. This approach
consists in a constructive procedure, a repair heuristic to make solutions feasi-
ble, and an improvement heuristic to improve feasible solutions. The constructive
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Algorithm RefereeAssignmentHeuristic1

Solution← BuildGreedySolution();2

if Solution is not feasible then3

Solution← RepairHeuristic(Solution);4

end5

if Solution is feasible then6

Solution← ImprovementHeuristic(Solution);7

return Solution;8

else9

return no feasible solution was found ;10

end11

Algorithm 1. Referee assignment heuristic

heuristic emphasizes feasibility. The repair heuristic is used when the construc-
tive algorithm fails to build a feasible solution. The improvement heuristic follows
the paradigm of the Iterated Local Search (ILS) metaheuristic [19,20]. The main
steps of the pseudo-code of three-phase heuristic for referee assignment are given
in Algorithm 1.

The pseudo-code of the ILS improvement heuristic is presented in Algorithm 2.
It starts by a first improving local search applied to the initial feasible solution.
Since the local search involves moves that change referee assignments for only
one facility at a time, it should be applied to every facility. Next, a perturbation
involving one pair of facilities is applied to the current solution. Each pertur-
bation is followed by two applications of the local search, once to each of the
facilities of the pair involved in the perturbation. The solution obtained after
local search is accepted if it satisfies some acceptance criterion. A new pertur-
bation is applied and the above steps are repeated, until an stopping criterion
based on the maximum number of iterations is met.

Algorithm ImprovementHeuristic(Solution)1

foreach facility f do2

Solution← LocalSearch(f, Solution);3

end4

for i = 1, . . . , MaxIterations do5

NewSolution ← Perturbation(Solution);6

Let f1 and f2 be the facilities involved in the perturbation;7

NewSolution ← LocalSearch(f1, NewSolution);8

NewSolution ← LocalSearch(f2, NewSolution);9

Solution← AcceptanceCriterion(Solution, NewSolution);10

end11

return Solution;12

Algorithm 2. ILS improvement heuristic
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We present next two extensions to improve the three-phase algorithm and
to make it more efficient and robust. Section 3.1 proposes a new constructive
algorithm that privileges not only feasibility, but also assignments leading to
low-cost solutions. Section 3.2 presents a MIP local search strategy to replace
the neighborhood-based procedure in Algorithm 2. The code of the algorithm
presented in [7] was also optimized and its parameters appropriately tuned.

3.1 Improved Greedy Constructive Heuristic

The constructive heuristic originally proposed in [7] was designed to build feasible
initial solutions, regardless of their value. Solutions built by this heuristic may
have several referees officiating too many games, while others officiate just a few
or even none.

To overcome this weakness, we propose a new constructive heuristic with the
same structure of the latter, but more focused into finding better initial solutions,
even at the cost of violating some constraints. In this new version, a first assign-
ment pass limits the number of refereeing slots assigned to each referee at its target
number of games. Only in a second pass, after all referees have been handled and
if there are still unassigned slots, the heuristic assigns additional games to each
referee, respecting the maximum number of games for each of them.

The main steps of the pseudo-code of this improved greedy heuristic are pre-
sented in Algorithm 3. We denote by Su the set of all unassigned refereeing
slots, by RHF the set of referees associated with a hard facility constraint, and by
RNHF the set of referees with no hard facility constraint, i.e. R = RHF ∪RNHF .
These sets are initialized respectively in lines 2, 3, and 4. The loop in lines 5 to 12
is performed until all referees associated with hard facility constraints have been
examined and assigned to as many refereeing slots as possible. The number of
refereeing slots assigned to each referee in this phase is limited to his/her target
number of games. Next, the loop in lines 13 to 21 attempts to fill the remaining
unassigned refereeing slots with referees without hard facility constraints. Again,
the algorithm limits the number of refereeing slots assigned to each referee to
his/her target number of games. A greedy criterion is applied in line 15 to se-
lect a facility f with the strongest need for referees with a certain skill level p
computed in line 14. The computation of the greedy criterion is based on two
measures: (a) an estimate of the minimum number of referees with skill level p
needed to officiate at facility f and (b) the number of unassigned refereeing slots
in facility f with minimum skill level less than or equal to p.

If unassigned refereeing slots still remain at line 22, the loop in lines 23 to
28 attempts to fill the remaining unassigned refereeing slots with referees that
are currently officiating games at the same facility where these slots take place.
At this point, the algorithm limits the number of refereeing slots assigned to
each referee to his/her maximum number of games. Finally, if there are still
unassigned refereeing slots at line 30, then the loop in lines 31 to 35 makes
infeasible assignments to complete the solution.

Once again, we stress the importance of quick and effective procedures for
finding initial solutions for hard combinatorial problems in sports, as already
noticed by Ribeiro and Urrutia [29].
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Algorithm BuildImprovedGreedySolution()1

Su ← {j = 1, . . . , n :
∑m

i=1 xij = 0};2

RHF ← {i = 1, . . . , m : referee i plays at least one game};3

RNHF ← R−RHF ;4

while RHF �= ∅ do5

Randomly select a referee i ∈ RHF ;6

RHF ← RHF − {i};7

Let f be the facility where referee i plays a game;8

forall j ∈ Su : refereeing slot j takes place at facility f do9

if
∑n

j=1 xij < Ti and referee i can be assigned to refereeing slot j10

then set xij ← 1 and Su ← Su − {j};
end11

end12

while Su �= ∅ and RNHF �= ∅ do13

p← maxi∈RNHF {pi};14

Let f be the facility with the strongest need for referees with skill15

level equal to p;
Randomly select a referee i ∈ RNHF with pi = p;16

RNHF ← RNHF − {i};17

forall j ∈ Su : refereeing slot j takes place at facility f do18

if
∑n

j=1 xij < Ti and referee i can be assigned to refereeing slot j19

then set xij ← 1 and Su ← Su − {j};
end20

end21

if Su �= ∅ then22

forall j ∈ Su do23

Let f be the facility where j takes place;24

forall i ∈ Q(f) do25

if
∑m

i=1 xij = 0 and referee i can be assigned to refereeing slot26

j then set xij ← 1 and Su ← Su − {j};
end27

end28

end29

if Su �= ∅ then30

forall j ∈ Su do31

Let f be the facility where refereeing slot j takes place;32

Randomly select a referee i ∈ Q(f);33

Set xij ← 1 and Su ← Su − {j};34

end35

end36

return Solution : {(i, j) : i ∈ R, j ∈ S and xij = 1};37

Algorithm 3. Improved greedy constructive heuristic
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3.2 MIP Local Search Strategy

The local search procedure performed within Algorithm [2] considers two types
of moves:

– swap moves: referees assigned to two refereeing slots are swapped (such
moves do not change the number of games assigned to each referee), and

– replace moves: the referee assigned to a refereeing slot is replaced by another
referee (such moves increase by one the number of games assigned to one
referee and decrease by one the number of games assigned to the other).

As referees cannot be assigned to games at different facilities, only moves in-
volving referees that officiate at the same facility (or do not officiate at all) are
allowed. In the first phase of the local search procedure, only improving moves
are accepted. The second phase also accepts moves leading to solutions at least
as good as the current one, using a list of forbidden moves to prevent cycles. The
latter is separated in two parts: first, only replace moves are considered; next,
only swap moves.

Given the facility � where the referees involved in the move officiate, the
moves applied to the current solution only change the assignments involving
referees and refereeing slots at this facility. Briefly, the local search solves a
smaller instance of the referee assignment problem, optimizing the assignments
of the referees that officiate at facility �. Therefore, we propose to substitute the
local search applied after each perturbation by the exact solution of the integer
programming model (1)-(7) associated with both facilities �1 and �2 involved in
perturbations performed within Algorithm 2:

minimize
∑

i∈Q(�1∪�2)

di (1)

subject to:
di = |Ti −

∑

j∈P (�1∪�2)

xij | ∀i ∈ Q(�1 ∪ �2) (2)

∑

i∈Q(�1∪�2)

xij = 1 ∀j ∈ P (�1 ∪ �2) (3)

∑

j∈P (�1∪�2)

xij ≤Mi ∀i ∈ Q(�1 ∪ �2) (4)

xij + xij′ ≤ 1 ∀i ∈ Q(�1 ∪ �2), ∀j ∈ P (�1 ∪ �2), ∀j′ ∈ C(j) (5)
∑

j∈U(i)

xij = 0 ∀i ∈ Q(�1 ∪ �2) (6)

xij ∈ {0, 1} ∀i ∈ Q(�1 ∪ �2), ∀j ∈ P (�1 ∪ �2), (7)

where:

xij =
{

1, if referee i ∈ Q(�1 ∪ �2) is assigned to slot j ∈ P (�1 ∪ �2)
0, otherwise.
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In the model above, P (�1∪�2) ⊆ S denotes the set of refereeing slots associated
to games that take place at facility �1 or at facility �2 in the current solution,
Q(�1∪�2) ⊆ R denotes the set of referees currently selected to officiate at facility
�1 or at facility �2, C(j) ⊆ P (�1∪�2) is the set of refereeing slots conflicting with
slot j ∈ P (�1∪�2) (i.e. refereeing slots overlapping with j), and U(i) ⊆ P (�1∪�2)
represents the set of refereeing slots to which referee i ∈ Q(�1 ∪ �2) cannot be
assigned due to a lower skill level or to his/her unavailability.

The objective function (1) states that the sum over all referees officiating
at facilities �1 or �2 of the slack between their target and actual numbers of
scheduled games is minimized. Constraints (2) enforce that the slack di is equal
to the absolute value of the difference between the target and actual numbers
of games assigned to referee i ∈ Q(�1 ∪ �2). Constraints (3) ensure that every
refereeing slot of games taking place at facilities �1 or �2 must be assigned to
exactly one referee. Constraints (4) establish the upper bound to the number
of refereeing slots that can be assigned to each referee. Constraints (5) ensure
that refereeing slots with timetabling conflicts cannot be assigned to the same
referee. Constraints (6) prevent assignments that violate minimum skill level
and unavailability restrictions. Constraints (7) establish the integrality of the
decision variables.

4 Computational Experiments

The computational experiments reported in this section aim to evaluate the im-
pact of each of the proposed improvements and to compare the new heuristic
with that in [7]. They were performed on an AMD Athlon 1800 processor with
768 Mbytes of RAM memory running Windows 2000TM. All codes were im-
plemented in C. The implementation details and parameter settings have been
described in detail in [7]. Version 9.1 of the commercial integer programming
solver CPLEX was used to implement the exact MIP local search strategy re-
ported in Section 3.2.

We report results for five algorithm versions evaluated in the experiments: (1)
the original heuristic (3phase), (2) the improved and code optimized version of
the latter (opt3phase), (3) the previous with the greedy constructive heuristic
(opt3phase+greedy), (4) the code optimized version with the MIP local search
(opt3phase+MIP), (5) the complete version including the greedy constructive al-
gorithm and the MIP local search (opt3phase+greedy+MIP). They were applied
to all randomly generated instances proposed in [7] and available from [5]. These
instances have up to 500 games and 1000 referees.

We selected three instances with 500 games and 750 referees, different numbers
of facilities (65 and 85), and different patterns for the target number of games
to illustrate the behavior of the algorithms.

The first experiment compares the original heuristic 3phase with its improved
version opt3phase. Table 1 summarizes average numerical results over ten runs
of each algorithm for each instance. The fourth column displays the time T1 (in
seconds) given to each algorithm in two different situations: 30 and 120 seconds.
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Table 1. Improved heuristic (500 games and 750 referees)

Facilities Pattern Heuristic T1 (s) Value T2 (s)

3phase 30.0 600.20 25.52
65 P0 opt3phase 30.0 582.80 26.83

3phase 120.0 577.80 99.39
opt3phase 120.0 569.80 99.33

3phase 30.0 998.20 28.21
65 P1 opt3phase 30.0 965.20 27.96

3phase 120.0 966.00 109.45
opt3phase 120.0 946.40 104.95

3phase 30.0 596.80 27.89
85 P0 opt3phase 30.0 565.40 28.68

3phase 120.0 544.60 109.47
opt3phase 120.0 534.60 97.68

The next column shows the best solution value obtained by each algorithm within
this time limit. The sixth column displays the computation time T2 (in seconds)
each heuristic took to find the best solution found. The code optimized heuristic
obtained better solutions in all cases.

We also used time-to-target (TTT) plots to evaluate and compare the algo-
rithm versions and the proposed extensions. These plots display on the ordinate
axis the probability that an algorithm will find a solution at least as good as
a given target value within a given running time, shown on the abscissa axis.
TTT plots were used by Feo, Resende, and Smith [12] and have been advocated
by Hoos and Stützle [16,17,18] as a way to characterize the running times of
stochastic algorithms for combinatorial optimization. They have been used in a
number of computational studies, see also e.g. [1,3,13,15,23,24,25,26].
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Fig. 2. Instance with 85 facilities and pattern P0 (hard target: 529)

We discuss how TTT plots are generated, following closely Aiex, Resende, and
Ribeiro [1]. These plots show the empirical distributions of the random variable
time-to-target solution value for different algorithms, instances, and target va-
lues. To plot the empirical distribution, we fix a solution target value and run
each algorithm 200 times, recording the running time when a solution with cost
at least as good as the target value is found. For each algorithm, we associate
with the i-th sorted running time ti a probability pi = (i − 1

2 )/200 and plot
the points zi = (ti, pi), for i = 1, . . . , 200. We notice that the most to the left a
curve appears in a TTT plot, the better the corresponding algorithm is (since it
takes less time to find the target value for any given probability). The runs were
interrupted after 60 minutes of computation time without finding a solution as
good as the target value.

Figures 1 to 3 depict some illustrative results for the five algorithm versions
on the same three selected test instances. Hard target solution values have been
considered in these experiments. The numerical results show that both the im-
proved greedy constructive heuristic (opt3phase+greedy) and the MIP local
search strategy (opt3phase+MIP) improved the code optimized (opt3phase) and
the original (3phase) versions. The complete version (opt3phase+greedy+MIP)
with the two extensions was faster and more robust than the others. We notice
that the curves associated to the variants opt3phase and 3phase are not com-
plete in Figure 3, since many runs did not reach the target solution value within
the 60 minutes time limit. The contributions of the greedy construction and of
the exact MIP local search are clear.

The next experiment illustrates the contribution of each component of the im-
proved 3-phase solution approach. Considering the instance with 65 facilities and
pattern P0, the first bar in Figure 4 shows the solution value after the applica-
tion of the new greedy constructive heuristic. The second illustrates the solution
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value after the MIP local search applied to the solution obtained by the new
greedy constructive heuristic. The third bar displays the solution value obtained
by the ILS heuristic running for 15,000 iterations (approximately 1000 seconds

Table 2. 500 games, 750 referees, 65 facilities, and pattern P0

Instance Feasible MIP LS ILS iteration ILS (1000 s)

I1 853.00 736.80 732.40 549.00
I2 893.20 767.60 763.00 507.00
I3 856.00 748.60 739.60 544.60
I4 886.20 784.00 778.00 534.60
I5 893.60 774.80 770.00 552.80

Average 876.40 762.36 756.60 537.60
Normalized 1.00 0.87 0.86 0.61
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Table 3. 500 games, 750 referees, 65 facilities, and pattern P1

Instance Feasible MIP LS ILS iteration ILS (1000 s)

I1 1193.00 1124.20 1119.40 903.60
I2 1062.00 983.20 977.20 724.40
I3 1126.40 1036.00 1031.40 809.80
I4 1208.80 1123.20 1118.20 923.60
I5 1144.80 1053.40 1049.40 803.40

Average 1147.00 1064.00 1059.12 832.96
Normalized 1.00 0.93 0.92 0.73

Table 4. 500 games, 750 referees, 85 facilities, and pattern P0

Instance Feasible MIP LS ILS iteration ILS (1000 s)

I1 864.20 760.00 755.60 508.00
I2 973.80 875.80 872.00 638.40
I3 954.60 852.20 846.40 588.60
I4 953.60 844.60 840.40 613.00
I5 942.80 820.80 817.40 537.00

Average 937.80 830.68 826.36 577.00
Normalized 1.000 0.89 0.88 0.62

of running time). The last result corresponds to the solution value obtained by
the ILS heuristic running for 10,800 seconds. This plot further illustrates that
each component of the heuristic plays a relevant role in the quality of the final
solution.

To further illustrate the results displayed in Figure 4, we give in Tables 2
to 4 the numerical results obtained by the full heuristic on the same instances
considered in [7]. Each row reports average results over ten runs of heuristic
opt3phase+greedy+MIP: the average solution value of the first feasible solution
found, the average solution value after the first application of the MIP local
search, the average solution value after the first complete iteration of the ILS
improvement phase (perturbation followed by MIP local search), and the average
solution value obtained by the ILS improvement phase after 1000 seconds of
computation time. Average and normalized results over the five instances are also
presented in each table, showing the contribution of each phase of the complete
heuristic to the final solution found.

5 Concluding Remarks

We presented a promising hybrid approach to embed MIP strategies within
metaheuristics. The local search phase of an ILS heuristic is replaced by an exact
procedure, following the same lines proposed by Fischetti and Lodi [14]. This
hybridization allowed to find hard target solution values in smaller processing
times. The extension of this approach to other metaheuristics is straightforward.
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These results open a new research avenue, showing that the hybridization
of metaheuristics with exact algorithms may lead to faster and more robust
algorithms.

We also illustrated the importance of a quick and effective construction
procedure to build initial solutions using a greedy criterion. We are currently
working on some extensions of the referee assignment problem by addressing
further constraints of real-life applications, such as the existence of hard and
soft links between some referees. Decision makers may also want referee assign-
ments matching preferences regarding the facilities, divisions, and time slots
where the referees officiate.
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Abstract. Sudoku is a notorious logic-based puzzle that is popular with
puzzle enthusiasts the world over. From a computational perspective, Su-
doku is also a problem that belongs to the set of NP-complete problems,
implying that we cannot hope to find a polynomially bounded algorithm
for solving the problem in general. Considering this feature, in this paper
we demonstrate how a metaheuristic-based method for solving Sudoku
puzzles (which was reported by the same author in an earlier paper),
can actually be significantly improved if it is coupled with Constraint
Programming techniques. Our results, which have been gained through
a large amount of empirical work, suggest that this combination of tech-
niques results in a hybrid algorithm that is significantly more powerful
than either of its constituent parts.

1 Introduction

Sudoku is a popular puzzle that appears regularly in a variety of newspapers,
books, and puzzle magazines worldwide. Although originating in the United
States in the late 1970s, it was actually in Japan in the 1980s that the puzzle
gained mainstream popularity. It was also here where it was given the name
“Sudoku”, which can be loosely translated in English as “solitary number”.

In its simplest form, Sudoku can be defined as follows. Given an n2 × n2 grid
divided into n2 distinct n×n boxes (denoted by the bold lines in fig. 1), the aim
is to fill the grid so that three separate criteria are met:

1. Each row of cells contains the integers 1 through to n2 exactly once;
2. Each column of cells contains the integers 1 through to n2 exactly once;
3. Each n× n box contains the integers 1 through to n2 exactly once.

In this paper we will refer to the value of n as the order of a puzzle.
Typically some of the cells in a Sudoku grid will have been pre-filled by

the puzzle master (see fig. 1). The player will then use these to logically de-
termine the values for other cells in the grid, eventually allowing him-or-her to
complete the puzzle. As can be imagined, how many and which cells the puzzle-
master chooses to fill will therefore be particularly important if the puzzle is

T. Bartz-Beielstein et al. (Eds.): HM 2007, LNCS 4771, pp. 96–107, 2007.
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Fig. 1. Example of an order-3 Sudoku puzzle. This particular grid is logic-solvable

to be enjoyable for the player. Generally speaking, a “good” puzzle (from the
player’s perspective) should be configured in such a way so that is logic-solvable
– that is, the player should be able to complete the puzzle in a logical sequence
of steps using forward-chaining logic only (obviously the deductive abilities of
different players will vary). In particular, a player should not usually be required
to make random choices, especially when the grid is still quite empty, because
if this guess turns out to be wrong, he-or-she will then have to go through the
unsatisfying process of backtracking and re-guessing. For these reasons “good”
Sudoku puzzles tend to have just one possible solution in each case.

From a computing perspective, the manual methods by which human players
go about solving Sudoku puzzles (albeit unbeknown to most of them) closely
follow simple Constraint Programming (CP) methods – each of the n4 cells
in the grid represents an integer variable which, initially, will have a domain
of 1 through to n2. Constraints can then be added in the form of “alldifferent”
constraints [1] (i.e. “all of the variables in row three should have different values”,
etc.), and by using the pre-filled cells in the grid (e.g. “because 5 appears in row
three, none of the unfilled cells in row three can contain a 5”, etc.). Combinations
of such constraints will reduce the domain-sizes of some of the variables and, if
an appropriate propagation scheme is used, the puzzle can then (hopefully) be
completed. (See the work of Simonis [2] for an example application of advanced
CP techniques to logic-solvable puzzles of order-3).

It is worth noting, however, that not all puzzles will have the logic-solvable
property. Indeed, Sudoku has been proved to belong to the class of NP-complete
problems [3], implying that we cannot hope to find a polynomially bounded
algorithm for solving all problem instances (unless, of course, P = NP). In other
words, we can be fairly sure that there will be many problem instances where the
exclusive use of logical rules will not be enough and some sort of search will also
be required. For this reason, many existing automatic Sudoku solvers also include
branch-and-bound search mechanisms, such as the Sudoku Solver by Logic.1

However, for this sort of approach to be successful there will, of course, also be a

1 Available at http://www.sudokusolver.co.uk/index.html
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reliance on the search space being a manageable size. Indeed, in situations where
this is not so – perhaps because the grid is still quite empty and/or because the
puzzle is of a high order – then the potential timing implications of such searches
might turn out to be impractical.

Given the above, in a previous paper [4] we suggested that it might also be
useful to consider other types of search methods with Sudoku. Consequently,
we proposed a stochastic approach based around Simulated Annealing (SA). In
the next section we will describe this algorithm and its general characteristics
(as reported in [4]). Subsequently, we will then suggest a way in which this
algorithm might be coupled with a simple CP procedure to form a more powerful
hybrid algorithm. In Section 3 we will then carry out a number of experiments
to compare our original SA algorithm with this new approach and will discuss
our results. Finally, Section 4 will conclude the paper.

2 A Hybrid Algorithm for Solving Sudoku

In the following descriptions, a grid cell will be described as fixed when its value
is definitely known, either because it has been defined in the problem instance
or, in the case of our hybrid algorithm, because its value has been determined
by our CP procedure (to be described in Section 3). Cells whose values are
undetermined will be described as unfixed.

The SA algorithm operates as follows. Given a problem instance of order n,
the algorithm first creates an initial solution by assigning a value to each of the
unfixed cells in the grid. This is done randomly, but in such a way so that each
box ends up containing the values 1 through to n2 exactly once. Creating an
initial solution in this way guarantees that the third criteria of Sudoku is met;
however, it also means that the grid may well feature violations of the remaining
two criteria. A suitable cost function is thus:

n2∑

i=1

r(i) +
n2∑

j=1

c(j) (1)

where r(i) and c(j) represent the number of values, 1 through to n2, that are
not present in the ith row of cells and the jth column of cells respectively. An
optimal (i.e. valid) solution will thus have a cost of zero.

In order to try and find an optimal solution, a neighbourhood operator is
then used that randomly selects two unfixed cells in the same box, and swaps
their contents. Following standard SA methods, a swap is then accepted (a) if
it causes the cost to drop, or (b) with a probability exp(−δ/t), where δ rep-
resents the proposed change in cost and t is the current temperature of the
system. During a run t is slowly reduced from an initial value t0 according to
a geometric cooling schedule. A simple reheating function is also used that re-
sets t to t0 when the algorithm considers itself to be caught in a local minimum.
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Note that the neighbourhood operator ensures that the third criterion of Su-
doku is always met. This means that that the total size of the search space is:

n∏

i=1

n∏

j=1

f(i, j)! (2)

where f(i, j) indicates the number of unfixed cells in the box in the ith row of
boxes and jth column of boxes.

In [4], this SA algorithm was applied to a large number of solvable problem
instances using a generator that was able to closely control the proportion of
fixed cells in a grid (this will also be used in Section 3). Results indicated that,
similarly to many other combinatorial optimisation problems (e.g. [5,6]), Sudoku
also features an “easy-hard-easy” phase transition with solvable instances. In
other words, the SA algorithm is generally able to discover an optimal solution
when presented with instances containing very low or very high proportions of
fixed cells, but at the boundary of these two extremes there occur instances that
the algorithm finds more difficult to solve. The suggested reasons for this phase
transition are as follows:

When the proportion of fixed cells in a grid is low, then according to eq. (2)
there will be a large search space for the algorithm to navigate. However, there
will also be a very large number of optimal solutions within this search space.2

Consequently, the algorithm will nearly always be able to find one of these in
a reasonable amount of time. For grids with high proportions of fixed cells,
meanwhile, although there will only be a very small number of optimal solutions
(and perhaps only one), the search space will be much smaller. Additionally, it
is also likely that solutions to these highly constrained instances will tend to lie
at the bottom of deep local minima (with a strong basin of attraction), thus also
allowing easy discovery by the algorithm. However, instances at the boundary of
these two extremes cause the algorithm more problems. First, the search spaces
for these instances will still be relatively large, but they will also tend to admit
only a small number of solutions. Second, because of their moderate numbers of
constraints, the fitness landscapes will also tend to feature more plateaus and
local minima, making things even more difficult for the algorithm. (See also the
work of Cheeseman et al [8]).

From these explanations it is easy to see that, from the point-of-view of a
stochastic search approach, an important contributing factor for an instance be-
ing “hard” is a large search space. However, it is fairly obvious that one way
that we might go about alleviating this factor is by first determining the con-
tents of as many cells as possible before applying such an algorithm. This is
the approach that our new hybrid algorithm will take here. Given a particular
problem instance, a simple CP procedure will first be applied which will fill-in
and fix as many cells as possible. Then, once this stage has been completed the
resultant partial solution will then be passed over to our original SA algorithm,
which will operate in the manner that we have described.
2 It has been calculated by Felgenhauer and Jarvis [7], for example, that there are

6,670,903,752,021,072,936,960 different optimal solutions for order-3 grids.
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3 Experimental Analysis

In order to compare the performance of the two algorithms, experiments were
carried out on a large number of solvable problem instances of various orders.
In Section 3.1 we will describe the experiments that we conducted on randomly-
formed problem instances (i.e. ones that are not necessarily logic-solvable). In
Section 3.2 we will then present results that were gained when using collections
of publicly available puzzles.

In all experiments the CP procedure that was used in conjunction with our
hybrid algorithm operated by following the 5 steps given below. This procedure
is deterministic.

1. For each unfixed cell in the grid, construct a list of possible values that this
cell could contain by examining the contents of the cell’s row, column, and
box;

2. If any of these lists contains just one value, then insert this value into the
cell, mark it as fixed, and go back to step 1;

3. Look at each row in turn. If any cell’s list in a particular row contains a
value x that does not occur in any of the other cells’ lists on the same row,
then insert x into this cell, mark the cell as fixed, and go back to step 1;

4. Repeat step 3 for each column and also each box;
5. If we are here, then the procedure cannot fix any further cells, and so end.

3.1 Solving Random Sudoku Grids

For our first set of experiments we used the same method of instance generation
as in [4], which operates as follows:

To start with, a full and optimal Sudoku grid of a given order is taken. Such
a grid can be obtained from a variety of places such as the solution pages of a
Sudoku book or newspaper, by calculating the puzzles “Root Solution” (see [4]),
or by simply running the SA algorithm using a blank grid as a problem instance.
In the next step of the procedure, this grid is then randomly shuffled using the
following five operators:

– Transpose the grid (2 possibilities);
– Permute columns of boxes within the grid (n! possibilities);
– Permute rows of boxes within the grid (n! possibilities);
– Permute columns of cells within a column of boxes (n!n possibilities); and
– Permute rows of cells within a column of boxes (n!n possibilities).

Note that all of these shuffle operators preserve the optimality of the grid.
Finally, a number of cells in the grid are then made blank by going through

each cell in turn and deleting its contents with a probability 1 − p, where p
is a parameter to be defined by the user. Obviously, this means that instances
generated with a low p-value will have a low proportion of fixed cells (i.e. a
fairly unconstrained problem instance), whilst larger values for p will give more
constrained, full problem instances.
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Before comparing the SA and hybrid algorithms, it is first worth taking a look
at how our CP procedure is able to cope with the randomly generated instances
unaided. This is shown in fig. 2. Here, we can witness the clear pattern between
the proportion of fixed cells in the initial problem instance, and the proportion of
cells that are fixed after the CP procedure has been applied. As is shown, for very
low p-values (0 to approximately 0.2) the CP procedure is not able to do anything
at all, because the near-blank grids that occur here do not provide enough clues
for any further cells to be filled. Meanwhile, for p-values of approximately 0.75
and above, because of the high proportion of fixed cells in the instances, the
CP procedure is nearly always able to complete the puzzles. Finally, in-between
these values, although the procedure is often unable to complete the puzzles, it
is, however, usually able to fill some of the cells. Note that this procedure is also
very quick to run – none of these trials took more than 0.03 CPU seconds (using
Windows XP, with an Intel 3.2GHz processor and 1.99Gb of RAM).
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Fig. 2. The relationship between p and the proportion of fixed cells after an application
of the CP procedure for problems of order 3, 4, and 5. Each individual point in the
figure is a mean, calculated after runs on twenty problem instances of a specific p-value.
The smooth lines were produced using Gnuplot’s sbezier function.

In order to compare the SA and hybrid algorithms directly, we used same
instance generator to perform the following experiments. For p-values of 0 to
1.0 (incrementing in steps of 0.05), twenty separate problem instances were first
created. With each of these instances, twenty separate trials with both algorithms
were then performed. This was done for instances of order-3 (91 cells), order-4
(256 cells), and order-5 (625 cells), using time limits of 2, 40, and 450 CPU
seconds respectively.

Finally, the SA in both algorithms was executed under the following conditions:

– An intial temperature t0 was calculated by applying a small number of neigh-
bourhood moves to the initial solution (in our case we used 100 moves). t0
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was then set to the variance of the cost across these moves (see [9] for the
theoretical foundations of this).

– At each temperature a total of (
∑n

i=1

∑n
j=1 f(i, j))2 neighbourhood moves

were attempted, where f has the same interpretation as eq. 2.
– The temperature was updated using a simple geometric scheme whereby

ti+1 = αti. In our case, we set α = 0.99.
– Finally, if no improvements in the cost were found for twenty successive

temperatures, then the current temperature was reset to t0, whereupon the
algorithm would continue as before.

Figure 3 shows the results of these experiments and displays, for each algo-
rithm, their success rates and solution times for all of the tested p-values. The
success rate indicates the proportion of runs where the algorithms were able to
find an optimal solution within the specified time limits. The solution time in-
dicates the average number of CPU seconds that it took to find a solution. (In
cases where the success rate was less than 1.0, those runs where optimality was
not found were not considered in the latter’s calculation.)

Looking at the order-3 results first, we can see that both algorithms feature
a 100% success rate across all of the instances and that, in both cases, lower
values for p will generally require longer solution times (due to the noted fact
that these instances will feature a larger search space). We can also see that for
p-values of 0 through to 0.2, both algorithms feature roughly the same solution
times. This is because, as we saw in fig. 2, with these instances the CP procedure
will not usually be given sufficient clues in order to be able to fill any of the cells,
and so the two algorithms are equivalent. For p-values of 0.25 up to around 0.7,
however, we can see that the hybrid algorithm clearly shows shorter solution
times, due to the fact that the CP procedure is able to fill some of the cells,
therefore reducing the size of the search space for the SA algorithm.

Moving our attention onto the results of the order-4 and order-5 experiments,
similar patterns also emerge with the solution times. In the centre of both graphs
we also witness dips in the success rates, indicating the presence of the phase
transition region that we have mentioned in Section 2. As we noted in [4], it
can also be seen that as puzzle order is increased, then the effects of the phase
transition also become more pronounced. Note, however, that throughout the
phase transition the hybrid algorithm shows both higher success rates and also
shorter solution times than the SA algorithm. According to a signed ranked test
the increases in the success rates across the various p-values were seen to be
significant (with ≥ 95% confidence).

3.2 Solving Published Sudoku Grids

For our second set of experiments we also tested the SA and hybrid algorithms
on a number of published instances that are known to have unique solutions. Our
first set of order-3 puzzles was taken from the on-line resource provided by the
Los Angeles Times [10]. These were published in the newspaper between January
and March 2006 and all are known to be logic solvable. A second set of order-3
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Fig. 3. Comparison of the SA and hybrid algorithms’ performance with puzzles of
order-3 (top), order-4 (middle), and order-5 (bottom)

puzzles was also taken from [11]. This resource features a very large collection
of different puzzles that each contain just 17 fixed cells, which is currently the
known minimum for guaranteeing that an order-3 puzzle features exactly one
solution. Finally, for completeness we also used the instance generator available
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at [12] to produce a number of order-4 and order-5 puzzles. In general, puzzles
of this size are much less popular than order-3 puzzles and so our choices here
were limited. For this reason, we advise the reader to show slight caution when
interpreting these latter results, as this generator has not been scientifically
verified.

Table 1 contains the results of these experiments and displays the source of the
puzzles, their order, the number of instances used each case (Inst.), the average
proportion of fixed cells in the instances (Fixed), and the puzzles’ “grades”.3

For each algorithm we then present the corresponding success rates and solution
times (with standard deviation), calculated in the same manner as in Section 3.1.
For the hybrid algorithm, we also present the average proportion of fixed cells
that occurred after the CP procedure was applied (Fixed′). All entries are an
average of ten runs on each of the available instances – i.e. 10 × Inst. runs in
each case. The same CPU time limits as Section 3.1 were also used.

Table 1. Performance Comparison of the SA and Hybrid Algorithms with Instances
with Unique Solutions

Instance Description SA Performance Hybrid Performance
Source Order Inst. Fixed Grade Suc. Rate Sol. Time Fixed′ Suc. Rate Sol. Time

[10] 3 10 0.34 gentle 0.99 0.67 ± 0.1 0.94 1.00 0.05 ± 0.1
[10] 3 10 0.36 tough 0.95 0.76 ± 0.3 0.59 1.00 0.22 ± 0.2
[10] 3 10 0.34 diabolical 0.82 0.80 ± 0.3 0.48 0.99 0.49 ± 0.2
[11] 3 1000 0.21 n/a 0.01 1.41 ± 0.2 0.30 0.16 0.64 ± 0.5

[12] 4 10 0.40 easy 0.04 14.3 ± 7.5 0.47 0.24 25.8 ± 10.3
[12] 4 10 0.40 hard 0.10 20.3 ± 9.4 0.48 0.28 16.4 ± 8.6
[12] 4 10 0.49 superhard 0.91 8.64 ± 6.6 0.74 1.00 2.18 ± 2.5

[12] 5 10 0.46 easy 0.01 165.9 ± 0.0 0.51 0.04 234.1 ± 23.2
[12] 5 10 0.45 hard 0.00 n/a 0.49 0.00 n/a

As can be seen, in all cases the hybrid algorithm features an equal or higher
success rate than the SA algorithm. Additionally, in all but two of the instance
sets, we can see that the hybrid algorithm also gives shorter solution times (the
remaining two cases are due to sampling errors caused by the very low success
rates). One interesting point to note from this table is the relatively low success
rates when tackling the order-3 instances of [11]. In reality these instances might
be the most difficult sorts of problem for a stochastic search approach, because
they feature close to the largest possible search spaces for order-3 grids whilst
also ensuring that only one possible solution exists. For similar reasons, we can
also see that the success rates for both algorithms also drop as the order of
the puzzles is increased (with the one anomaly being the order-4 “superhard”
instances, which could be due to some feature of the problem generator).
3 Note that puzzle grades are probably superfluous here, because they tend to relate

to the complexity of the logical techniques that a player needs to use in order to
complete it. Additionally, the boundaries and adjectives that are used to define the
different grades also vary from place to place.
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4 Conclusions and Discussion

In this paper we have seen that our hybrid algorithm, which incorporates
constraint programming and stochastic search, clearly outperforms the same
stochastic search algorithm when used on its own. We have seen that the two
techniques that make up this hybrid algorithm actually seem to complement
one another, because it is evident that on the one hand, CP techniques have
the potential to drastically improve the performance of the stochastic search
algorithm, whilst on the other hand, the stochastic search algorithm can also be
used to help CP-based approaches to solve a much wider range of instances (i.e.
those that are not necessarily “logic-solvable”). Indeed, it is also likely that if
we were to improve either aspect of the hybrid algorithm (e.g., by using more
advanced deduction techniques such as the “swordfish” and “X-wing” rules [13],
or by using more sophisticated search techniques), then the overall performance
of the hybrid algorithm would also subsequently improve.

One interesting aspect of this work is the observation that our CP procedure
allows the possibility of moving a problem instance away from the phase transi-
tion region, thus making it easier for the SA algorithm to solve. However, if this
is the case, then we might ask whether it is also possible for the same procedure
to move some instances into the phase transition region, making them harder
to solve. We believe the answer to this question to be negative. This is because,
as we have seen, the CP procedure will only ever fix a cell if it has deduced its
contents with absolute certainty. Thus, although the procedure might be able to
reduce the search space size by adding additional constraints, it will not reduce
the number of solutions within this space, and its actions may well lead to a
reduction in the number and/or size of plateaus in the fitness landscape. It is
likely, therefore, that the instance will become easier to solve in general.

Considering future work, it is interesting to note that Sudoku can also be
modelled as a graph colouring problem. This is done by considering each of the
n4 cells in a grid as a node, and then adding edges between any two nodes
corresponding to a pair of cells in the same row, column, and/or box (meaning
that the n2 nodes occurring in each row/column/box will form a clique of size
n2.) Further edges can then also be added due to the pre-filled cells that are
supplied with the puzzle – for example in fig. 1 it is clear that nodes (cells) 9
(top right) and 10 (first on second row) should never be the same colour, and so
we can add an extra edge between these in order to ensure that they will never
be allocated the same colour in a feasible solution. Given such a graph, the task
is to then colour the nodes using exactly n2 colours. Graph colouring has, of
course, been widely studied in the past (see [14], for one example) and in the
future it is likely that various techniques from this field could show applicability
to Sudoku and, indeed, vice-versa.4

Finally, it is worth stressing that although Sudoku itself might not seem to
have great practical implications in a real-world/industrial context, to its credit it

4 Practitioners interested in pursuing this promising research-avenue are invited to
make use of a Sudoku to graph colouring converter that we have implemented, which
is available at http://www.cardiff.ac.uk/carbs/quant/rhyd/rhyd.html
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is a problem that is very easy to understand, and it is certainly the case that it has
encouraged many people to take an interest in constraint satisfaction problems.
Perhaps more importantly though, it is noticeable that Sudoku features various
similarities with other important combinatorial optimisation problems, and so its
study should allow us to gain deeper insights into these as well. As an example,
consider a typical timetabling problem where the aim is to assign a number of
events to a limited number of timeslots and rooms in accordance with a set of
constraints. In these problems it is common, among other things, to encounter
pre-assignment constraints (e.g. “event 3 must be scheduled into room 6 in
timeslot 8”, etc.). In the past, various stochastic search techniques have been
applied to handle these sorts of constraints in timetabling (see, for example,
some of the works in [15]). However, it is noticable that this sort of constraint is
actually very similar to the constraints introduced by the fixed cells in Sudoku.
This suggests that it should also be useful to consider hybrid algorithms (of the
sort described here) for these sorts of problems as well. Here, we refer the reader
to papers by Merlot et al. [15] and Duong and Lam [16], where some preliminary
work on this matter has been conducted.
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Abstract. Finding appropriate values for the parameters of an algo-
rithm is a challenging, important, and time consuming task. While typ-
ically parameters are tuned by hand, recent studies have shown that
automatic tuning procedures can effectively handle this task and often
find better parameter settings. F-Race has been proposed specifically for
this purpose and it has proven to be very effective in a number of cases.
F-Race is a racing algorithm that starts by considering a number of can-
didate parameter settings and eliminates inferior ones as soon as enough
statistical evidence arises against them. In this paper, we propose two
modifications to the usual way of applying F-Race that on the one hand,
make it suitable for tuning tasks with a very large number of initial
candidate parameter settings and, on the other hand, allow a significant
reduction of the number of function evaluations without any major loss
in solution quality. We evaluate the proposed modifications on a number
of stochastic local search algorithms and we show their effectiveness.

1 Introduction

The full potential of a parameterized algorithm cannot be achieved unless its
parameters are fine tuned. Often, practitioners tune the parameters using their
personal experience guided by some rules of thumb. Usually, such a procedure is
tedious and time consuming and, hence, it is not surprising that some authors
say that 90% of the total time needed for developing an algorithm is dedicated
to find the right parameter values [1]. Therefore, an effective automatic tuning
procedure is an absolute must by which the computational time and the human
intervention required for tuning can be significantly reduced. In fact, the selec-
tion of parameter values that drive heuristics is itself a scientific endeavor and
deserves more attention than it has received in the operations research litera-
ture [2]. In this context, few procedures have been proposed in the literature.
F-Race [3,4] is one among them and has proven to be successful and useful in a
number of tuning tasks [4,5,6,7].

Inspired by a class of racing algorithms proposed in the machine learning lit-
erature, F-Race evaluates a given set of parameter configurations sequentially on
a number of problem instances. As soon as statistical evidence is obtained that

T. Bartz-Beielstein et al. (Eds.): HM 2007, LNCS 4771, pp. 108–122, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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a candidate configuration is worse than at least another one, the inferior can-
didate is discarded and not considered for further evaluation. In all previously
published works using F-Race, the initial candidate configurations were obtained
through a full factorial design. This design is primarily used to select the best
parameter configuration from a relatively small set of promising configurations
that the practitioner has already established. Nevertheless, the main difficulty
of this design is that, if the practitioner is confronted with a large number of
parameters and a wide range of possible values for each parameter, the number
of initial configurations becomes quite large. In such cases, the adoption of the
full factorial design within F-Race can become impractical and computationally
prohibitive. In order to tackle this problem, we propose two modifications to the
original F-Race approach. The first consists in generating configurations by ran-
dom sampling. Notwithstanding the simplicity, the empirical results show that
this approach can be more effective—in the context of tuning tasks—than the
adoption of a full factorial design. However, if the number of parameters is large,
this methodology might need a large number of configurations to achieve good
results. We alleviate this problem taking inspiration from model-based search
techniques [8]. The second procedure uses a probabilistic model defined on the
set of all possible parameter configurations and at each iteration, a small set of
parameter configurations is generated according to the model. Elite configura-
tions selected by F-Race are then used to update the model in order to bias the
search around the high quality parameter configurations.

The paper is organized as follows: In Section 2, we introduce the proposed
approach and we present some empirical results in Section 3. We discuss some
related work in Section 4, and conclude the paper in Section 5.

2 Sampling F-Race and Iterative F-Race for Tuning
Stochastic Local Search Algorithms

For a formal definition of the problem of tuning SLS algorithms, we follow Bi-
rattari et al. [3]. The problem is defined as a 6 tuple 〈Θ, I, PI , Pc, t, C〉, where
Θ is the finite set of candidate configurations, I is the possibly infinite set of
problem instances, PI is a probability measure over the set I, t is a function
associating to every instance the computation time that is allocated to it, PC is
a probability measure over the set of all possible values for the cost of the best
solution found in a run of a configuration θ ∈ Θ on an instance i, C(θ) is the
criterion that needs to be optimized with respect to θ: the solution of the tuning
problem consists in finding a configuration θ∗ such that

θ∗ = arg min
θ
C(θ). (1)

Typically, C(θ) is an expected value where the expectation is considered with
respect to both PI and PC . The main advantage of using expectation is that it
can be effectively and reliably estimated with Monte Carlo procedures. In this
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Fig. 1. Visual representation of a typical trace of F-Race giving the number of surviving
configurations in dependence of the number of instances seen. The x-axis represents the
number of candidate configurations that are still in the race and the y-axis represents
the number of instances that has been used for evaluating the configurations. As the
evaluation proceeds, F-Race focuses more and more on the promising configurations.

paper, we focus on the minimization of the expected value of the solution cost
and the criterion is given as:

C(θ) = EI,C

[
c(θ, i)

]
=

∫

I

∫

C

ct(θ, i) dPC(ct|θ, i) dPI(i), (2)

where, ct(θ, i) is a random variable that represents the cost of the best solution
found by running configuration θ on instance i for t seconds. The integration is
taken in the Lebesgue sense and the integrals are estimated in a Monte Carlo
fashion on the basis of a so-called tuning set of instances. It is straightforward
to use criteria other than the expected value such as inter-quartile range of
the solution cost. In the case of decision problems, the practitioner might be
interested in minimizing the run-time of an algorithm, a task that can be handled
in a straightforward way by F-Race.

F-Race is inspired by a class of racing algorithms proposed in the machine
learning literature for tackling the model selection problem [9,10]. In F-Race, as
in other racing algorithms, a set of given candidate configurations are sequen-
tially evaluated on a number of tuning instances. As soon as sufficient evidence
is gathered that a candidate configuration is worse than at least another one,
the former is discarded from the race and is not further evaluated. The race
terminates when either one single candidate configuration remains, or the avail-
able budget of computation time is used. The peculiarity of F-Race compared
to other racing algorithms is the adoption of the Friedman two-way analysis of
variance by ranks [11], a nonparametric statistical test that appears particularly
suitable in the context of racing algorithms for the tuning task. The progress of
the F-Race procedure can be graphically illustrated as shown in Figure 1.

The main focus of this paper is the method by which the initial set of con-
figurations is obtained in F-Race: while F-Race does not specify how Θ is de-
fined, in most of the studies on F-Race, the configurations are defined using a
full factorial design (FFD). In the simplest case, this is done as follows: Let M =
{M1, . . . , Md} be the set of parameters that need to be tuned whose ranges are
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given by (mink, maxk), for k = 1, . . . , d, where mink and maxk are the minimum
and maximum values of the parameter Mk, respectively. For each element in M,
the practitioner has to choose a certain number of values; each possible combina-
tion of these parameter values leads to one unique configuration and the set of all
possible combinations forms the initial set of configurations. If lk values are chosen
for Mk, then the number of initial configurations is

∏d
k=1 lk. When each parame-

ter takes l values, then
∏d

k=1 l = ld; that is, the number of configurations grows
exponentially with respect to the number of parameters. As a consequence, even
a reasonable number of possible values for each parameter makes the adoption of
a full factorial design impractical and computationally prohibitive.

2.1 Sampling F-Race

A simple way to overcome the shortcomings of FFD is sampling. This means
that the elements of Θ are sampled according to a given probability measure PX

defined on the space X of parameter values. If a priori knowledge is available
on the effect of the parameters and on their interactions, this knowledge can
be used to shape the probability measure PX and therefore to suitably bias the
sampling of the initial configurations. On the other hand, if no a priori knowl-
edge on the parameter values is available, except the boundary constraints, then
each possible value in the available range for each parameter should be given
equal probability of being selected in sampling. In this case, PX is a d-variate
uniform distribution, which is factorized by a product of d univariate indepen-
dent uniform distributions. A sample from the d-variate uniform distribution
is a vector corresponding to a configuration θ such that a value xk in the vec-
tor is sampled from the univariate independent uniform distribution parame-
terized by (mink, maxk). We call this strategy random sampling design (RSD).
The F-Race procedure is then applied to the set of sampled configurations. We
denote this procedure as RSD/F-Race. It should be noted that the performance
of the winning configuration is greatly determined by the number of sampled
configurations, Nmax.

2.2 Iterative F-Race

RSD/F-Race can identify promising configurations in the search space. However,
finding the best configuration from the promising regions is often a difficult
task. In order to address this issue, we propose iterative F-Race (I/F-Race),
a supplementary mechanism to the original F-Race approach. It is an iterative
procedure in which each iteration consists in first defining a probability mea-
sure over the parameter space using promising configurations obtained from the
previous iteration, then generating configurations that are distributed according
to the newly defined probability measure, and finally applying F-Race on the
generated configurations. This approach falls under the general framework of
model-based search [8].

The way in which the probability measure is defined at each iteration plays a
crucial role in biasing the search towards regions containing high quality configu-
rations. The main issues in the search bias are the choice of the distribution and
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search intensification. For what concerns the distribution, there exist a num-
ber of choices. Here, we adopt a d-variate normal distribution parameterized
by mean vector and covariance matrix. In order to intensify the search around
the promising configurations, a d-variate normal distribution is defined on each
surviving configuration from the previous iteration such that the distribution is
centered at the values of the corresponding configuration. Moreover, the spread
of the normal densities given by the covariance matrix is gradually reduced at
each iteration.

This paper focuses on a scenario in which the practitioner does not have
any a priori knowledge on the parameter values. Hence, we assume that the
values taken by the parameters are independent, that is, knowing a value for a
particular parameter does not give any information on the values taken by the
other parameters. Consequently, the d-variate normal distribution is factorized
by a product of d univariate independent normal densities parameterized by
μ = (μ1, . . . , μd) and σ = (σ1, . . . , σd). At each iteration, the standard deviation
vector σ of the normal densities is reduced heuristically using the idea of volume
reduction: Suppose that Ns configurations survive after a given iteration; we
denote the surviving configurations as θs = (xs

1, . . . , x
s
d), for s = 1, . . . , Ns. At a

given iteration r, let Vr be the total volume of the d-dimensional sampling region
bounded by (μsr

k ± σsr

k ), for k = 1, . . . , d; for iteration r+1, in order to intensify
the search, we reduce the volume of the sampling region by a factor equal to
the number of sample configurations allowed for each iteration, Nmax; therefore
Vr+1 = Vr/Nmax, from which after some basic mathematical transformation,
we have:

σs
k = R

sprev

k ·
(

1
Nmax

)1/d

for k = 1, . . . , d, (3)

where R
sprev

k is set to standard deviation of the normal distribution component
from which xs

k has been sampled from the previous iteration. In simple terms, the
adoption of Equation 3 allows I/F-Race to reduce the range of each parameter
that falls around one standard deviation from the mean at a constant rate of
(1/Nmax)1/d for each iteration—the larger the value of Nmax, the higher the
rate of volume reduction. Though one could use more advanced techniques to
update the distribution as suggested by the model-based search framework [8],
we have adopted the above described heuristic way of intensifying search due to
its simplicity.

Note that in the first iteration, a d-variate uniform distribution is used as the
probability measure, thus for the following iteration, R

sprev

k is set to the half of
range, that is, (maxk −mink)/2, where maxk and mink are parameters of the
uniform distribution component from which xs

k has been sampled, respectively.
The proposed approach adopts a strategy in which the number of configura-

tions drawn from a d-variate normal distribution defined on a surviving config-
uration is inversely proportional to the configurations’ expected solution cost.
Recall that we are faced with the minimization of the expected solution cost. To
do so, a selection probability is defined: the surviving configurations are ranked
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according to their expected solution costs and the probability of selecting a d-
variate normal distribution defined on a configuration with rank z is given by

pz =
Ns − z + 1

Ns · (Ns + 1)/2
. (4)

A configuration is obtained by first choosing a d-variate normal distribution
according to Equation 4, and then sampling from the chosen distribution. This
is repeated until Nmax configurations are sampled.

Implementation Specific Details. In order to guarantee that I/F-Race does
a specific minimum number of iterations and that it has a minimum number
of survivors, we have modified F-Race slightly to stop it prematurely. At each
iteration, the race is stopped if one of the following conditions is true:

– when Nmin configurations remain;
– when a certain amount of computational budget, CBmin, is used;
– when the configurations in the race are evaluated on at least Imax instances.

Though these modifications introduce 3 parameters, they are set in a reason-
able and straightforward way with respect to the total computational budget
CB when the algorithm starts: (i) CBmin is set to CB/5: this setting allows
I/F-Race to perform at least five iterations; (ii) Nmin is set to d: this setting
enables I/F-Race to search in a number of promising regions rather than just
concentrating on a single region; (iii) Imax is set to 2 · (CBmin/Nmax): if none
of the configurations is eliminated from the race then each configuration has
been evaluated on CBmin/Nmax instances; hence, twice this value seems to be
a reasonable upper bound.

The maximum number Nmax of configurations allowed for each race is kept
constant throughout the procedure. Moreover, the Ns configurations that have
survived the race are allowed to compete with the newly sampled configurations.
Therefore, Nmax −Ns configurations are sampled anew at each iteration.

The order in which the instances are given to the race is randomly shuffled
for each iteration. Since the surviving configurations of each race are allowed to
enter into the next race, their results could be reused if the configuration has
already been evaluated on a particular instance. However, since we do not want
to bias I/F-Race in the empirical study, we did not use this possibility here.

The boundary constraints are handled in an explicit way. We adopt a method
that consists in assigning the boundary value if the sampled value is outside
the boundary. The rationale behind this adoption is to allow the exploration
of values that lay at the boundary. In the case of parameters that take integer
values, the value assigned to each integer parameter in the entire procedure is
rounded off to the nearest integer.

3 Experiments

In this section, we study the proposed RSD/F-Race and I/F-Race using three ex-
amples. Though any parameterized algorithm may be tuned, all three examples
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concern the tuning of stochastic local search algorithms [12]: (i) tuning
MAX −MIN ant system (MMAS) [13], a particular ant colony optimization
algorithm, for a class of instances of the traveling salesman problem (TSP),
(ii) tuning estimation-based local search, a new local search algorithm for stochas-
tic combinatorial optimization problems [14], for a class of instances of the prob-
abilistic traveling salesman problem (PTSP), and (iii) tuning a simulated
annealing algorithm for a class of instances of the vehicle routing problem
with stochastic demands (VRP-SD). The primary goal of these examples is to
show that RSD/F-Race and I/F-Race can significantly reduce the computational
budget required for tuning.

We compare RSD/F-Race and I/F-Race with an implementation of F-Race
that uses a full factorial design (FFD). For RSD/F-Race and I/F-Race we make
the assumption that the a priori knowledge on the parameter values is not
available. In the case of FFD, we consider two variants:

1. FFD that uses a priori knowledge; a parameter Mk is allowed to take lk
values, for k = 1, . . . , d, where lk values are chosen according to the a pri-
ori knowledge available on the parameter values; we denote this variant by
FFDA/F-Race.

2. FFD that uses random values: a parameter Mk is allowed to take lk values,
for k = 1, . . . , d, where lk values are chosen randomly; we denote this variant
by FFDR/F-Race. Note that the number of configurations in this variant is
the same as that of FFDA/F-Race. This serves as a yardstick to analyze the
usefulness of the a priori knowledge. The rationale behind the adoption of
this yardstick is that if one just takes random values for FFD and achieves
better results then FFDA/F-Race, then we can conjecture that the available
a priori knowledge is either not accurate or simply not useful, at least in the
examples that we consider here.

The minimum number of steps allowed in F-Race for all algorithms before ap-
plying the Friedman test is set to 5 as proposed in [4].

The maximum computational budget of FFDA/F-Race and FFDR/F-Race are
set to 10 times the number of initial configurations. The rationale behind this
choice is that, if none of the configurations is eliminated, FFDA/F-Race and
FFDR/F-Race evaluate all the configurations on at least 10 instances. This budget
is also given for RSD/F-Race and I/F-Race. In order to force RSD/F-Race to
use the entire computational budget, the number of configurations is set to
one-sixth of the computational budget. Since I/F-Race needs to perform at
least five F-races with the same budget as that of RSD/F-Race, the number
of initial configurations in each F-Race run by I/F-Race is set to one-fifth of
the number of configurations given to RSD/F-Race. Moreover, in order to study
the effectiveness of RSD/F-Race and I/F-Race under strong budget constraints,
the computational budget is reduced by a factor of two, four, and eight. Note
that, in these cases, the number of configurations in RSD/F-Race and I/F-Race
is set according to the allowed budget using the same rule as described before.

Each tuning algorithm is allowed to perform 10 trials and the order in which
the instances are given to an algorithm is randomly shuffled for each trial.
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All tuning algorithms were implemented and run under R version 2.41 and we
used a public domain implementation of F-Race in R which is freely available for
download [15]. MMAS2 and estimation-based local search were implemented
in C and compiled with gcc, version 3.4. Simulated annealing for VRP-SD is
implemented in C++. Experiments were carried out on AMD OpteronTM244 1.75
GHz processors with 1 MB L2-Cache and 2 GB RAM, running under the Rocks
Cluster Distribution 4.2 GNU/Linux.

In order to quantify the effectiveness of each algorithm, we study the expected
solution cost of the winning configuration C(θ∗), where the expectation is taken
with respect to the set of all trials and the set of all test instances. We report the
expected solution cost of each algorithm, measured as the percentage deviation
from a reference cost, which is given by the average over C(θ∗) obtained by each
algorithm. The adoption of reference cost allows us to compare the expected
solution cost of different algorithms more directly.

In order to test whether the observed differences between the expected solution
costs of different tuning algorithms are significant in a statistical sense, a random
permutation test is adopted. The level of significance at which we reject the null
hypothesis is 0.05; two sided p-value is computed for each comparison.

3.1 Tuning MMAS for TSP

In this study, we tune 6 parameters ofMMAS:

1. relative influence of pheromone trails, α;
2. relative influence of heuristic information, β;
3. pheromone evaporation rate, ρ;
4. parameter used in computing the minimum pheromone trail value τmin, γ,

which is given by τmax/(γ ∗ instance size);
5. number of ants, m;
6. number of neighbors used in the solution construction phase, nn.

In FFDA/F-Race and FFDR/F-Race, each parameter is allowed to take 3 values.
The parameter values in FFDA/F-Race are set as follows: α ∈ {0.75, 1.00, 1.50},
β ∈ {1.00, 3.00, 5.00}, ρ ∈ {0.01, 0.02, 0.03}, γ ∈ {1.00, 2.00, 3.00}, m ∈ {500,
750, 1000}, and nn ∈ {20, 30, 40}. These values are chosen reasonably close to
the values proposed in [16]. Note that the values are chosen from the version
without the local search. Table 1 shows the ranges of the parameters considered
for RSD/F-Race and I/F-Race. The computational time allowed for evaluating
a configuration on an instance is set to 20 seconds. Instances are generated with
the DIMACS instance generator [17]. We used uniformly distributed Euclidean
instances of size 750; 1000 instances were generated for tuning; 300 other in-
stances were generated for evaluating the winning configuration. Table 2 shows
1 R is a language and environment for statistical computing that is freely available

under the GNU GPL license at http://www.r-project.org/
2 We used the ACOTSP package, which is a public domain software that provides an im-

plementation of various ant colony optimization algorithms applied to the symmetric
TSP. The package available at: http://www.aco-metaheuristic.org/aco-code/

http://www.r-project.org/
http://www.aco-metaheuristic.org/aco-code/
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Table 1. Ranges of the parameter values considered for tuning MMAS for TSP with
RSD/F-Race and I/F-Race

parameter range

α [0.0, 1.5]
β [0.0, 5.0]
ρ [0.0, 1.0]
γ [0.01, 5.00]
m [1, 1200]
nn [5, 50]

Table 2. Computational results for tuning MMAS for TSP. The column entries with
the label per.dev shows the percentage deviation of each algorithms’ expected solution
cost from the reference cost : +x means that the expected solution cost of the algorithm
is x% more than the reference cost and −x means that the expected solution cost of
the algorithm is x% less than the reference cost. The column entries with the label
with max.bud shows the maximum number of evaluations given to each algorithm and
the column with the label usd.bud shows the average number of evaluations used by
each algorithm.

algo per.dev max.bud usd.bud

FFDR/F-Race +13.45 7290 5954
FFDA/F-Race +11.13 7290 5233
RSD/F-Race −2.69 7290 7232
I/F-Race −3.92 7290 7181

RSD/F-Race −2.55 3645 3275
I/F-Race −3.84 3645 3564

RSD/F-Race −2.51 1822 1699
I/F-Race −3.66 1822 1793

RSD/F-Race −2.17 911 823
I/F-Race −3.23 911 894

the percentage deviation of each algorithms’ expected solution cost from the
reference cost, the maximum budget allowed for each algorithm and the average
number of evaluations used by each algorithm.

From the results, we can see that I/F-Race is very competitive: under equal
computational budget, the expected solution cost of I/F-Race is approximately
17% and 15% less than that of FFDR/F-Race and FFDA/F-Race, respectively
(the observed differences are significant according to the random permutation
test). On the other hand, the expected solution cost of RSD/F-Race is also very
low. However, I/F-Race reaches an expected cost that is about 1% less than
that of RSD/F-Race. Indeed, the observed difference is significant in a statistical
sense. Regarding the budget, FFDR/F-Race and FFDA/F-Race use only 80% and
70% of the maximum budget. This early termination of the F-Race is attributed
to the adoption of FFD: since, there are rather few possible values for each pa-
rameter, the inferior configurations are identified and discarded within few steps.
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Table 3. Ranges of the parameter values considered for tuning estimation-based local
search for PTSP with RSD/F-Race and I/F-Race

parameter range

p1 [0.0, 1.0]
w [0, 100]
p2 [0.0, 1.0]

However, the poor performance of FFDR/F-Race and FFDA/F-Race is not only
attributable to the fact that they do not use the budget effectively: Given only
half of the computational budget (a maximum budget of 3645), RSD/F-Race
and I/F-Race achieve expected solution costs that are still 17% and 15% lower
than FFDR/F-Race and FFDA/F-Race, respectively (the observed differences are
significant according to the random permutation test). Another important ob-
servation is that, in the case of I/F-Race and RSD/F-Race, reducing the budget
does not degrade the effectiveness to a large extent. Furthermore, in all these
reduced budget cases, I/F-Race achieves an expected solution cost which is
approximately 1% less than that of RSD/F-Race (the observed differences are
significant according to the random permutation test).

3.2 Tuning Estimation-Based Local Search for PTSP

Estimation-based local search is an iterative improvement algorithm that makes
use of the 2-exchange and node-insertion neighborhood relation, where the delta
evaluation is performed using empirical estimation techniques [14]. In order to
increase the effectiveness of this algorithm, a variance reduction technique called
importance sampling has been adopted. Three parameters that need to be tuned
in this algorithm are:

1. shift probability for 2-exchange moves, p1;
2. number of nodes allowed for shift in 2-exchange moves, w;
3. shift probability for node-insertion moves, p2.

Since this is a recently developed algorithm, a priori knowledge is not available
on the parameter values. Thus, in FFDA/F-Race, the values are assigned by
discretization: for each parameter, the range is discretized as follows: p1 = p2

∈ {0.16, 0.33, 0.50, 0.66, 0.83}, and w = {8, 17, 25, 33, 42}. Table 3 shows the
ranges of the parameters considered for RSD/F-Race and I/F-Race. Estimation-
based local search is allowed to run until it reaches a local optimum. Instances
are generated as described in [14]: we used clustered Euclidean instances of size
1000; 800 instances were generated for tuning; 800 more instances were generated
for evaluating the winning configuration.

The computational results show that the difference between the expected cost
of the solutions obtained by different algorithms exhibits a trend similar to the
one observed in the TSP experiments. However, the percentage deviations from
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Table 4. Computational results for tuning estimation-based local search for PTSP.
The column entries with the label per.dev shows the percentage deviation of each
algorithms’ expected solution cost from the reference cost : +x means that the expected
solution cost of the algorithm is x% more than the reference cost and −x means that the
expected solution cost of the algorithm is x% less than the reference cost. The column
entries with the label with max.bud shows the maximum number of evaluations given
to each algorithm and the column with the label usd.bud shows the average number
of evaluations used by each algorithm.

algo per.dev max.bud usd.bud

FFDR/F-Race +1.45 1250 1196
FFDA/F-Race +1.52 1250 1247
RSD/F-Race −0.62 1250 1140
I/F-Race −0.53 1250 1232

RSD/F-Race −0.17 625 615
I/F-Race −0.52 625 618

RSD/F-Race −0.06 312 307
I/F-Race −0.58 312 278

RSD/F-Race −0.37 156 154
I/F-Race −0.11 156 150

the reference cost are relatively small: under equal computational budget, the
expected solution cost of I/F-Race and RSD/F-Race are approximately 2% less
than that of FFDR/F-Race and FFDA/F-Race, respectively. Note that this differ-
ence is significant according to a random permutation test. Though RSD/F-Race
obtains an expected solution cost which is 0.01% less than that of I/F-Race,
the random permutation test does not reject the null hypothesis. The overall
low percentage deviation between algorithms is attributed to the fact that the
estimation based local search is not extremely sensitive to the parameter values:
there are only 3 parameters and interactions among them are quite low. As a
consequence, the tuning task becomes relatively easy (as in the case of the pre-
vious task of tuning ofMMAS). This can be easily seen with the used budget
of FFDR/F-Race: if the task of finding good configurations were difficult, the
race would have terminated early. Yet, this is not the case and almost the entire
computational budget has been used.

The numerical results on the budget constraints show that both RSD/F-Race
and I/F-Race are indeed effective. Given only one-eighth of the computational
budget (a maximum budget of 156 evaluations), RSD/F-Race and I/F-Race
achieve expected solution costs which are approximately 1.4% less than that of
FFDR/F-Race and FFDA/F-Race. This observed difference is significant according
to the random permutation test. However, in this case, the random permutation
test cannot reject the null hypothesis that RSD/F-Race and I/F-Race achieve ex-
pected solution costs that are equivalent. On the other hand, given one-half and
one-fourth of the computational budget, I/F-Race achieves an expected solution
cost that is approximately 0.4% less that of RSD/F-Race (observed differences
are significant according to the random permutation test).
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Table 5. Ranges of the parameter values considered for tuning a simulated annealing
algorithm for VRP-SD with RSD/F-Race and I/F-Race

parameter range

α [0.0, 1.0]
q [1, 100]
r [1, 100]
f [0.01, 1.00]

Table 6. Computational results for tuning a simulated annealing algorithm for VRP-
SD. The column entries with the label per.dev shows the percentage deviation of
each algorithms’ expected solution cost from the reference cost : +x means that the
expected solution cost of the algorithm is x% more than the reference cost and −x
means that the expected solution cost of the algorithm is x% less than the reference
cost. The column entries with the label with max.bud shows the maximum number of
evaluations given to each algorithm and the column with the label usd.bud shows the
average number of evaluations used by each algorithm.

algo per.dev max.bud usd.bud

FFDR/F-Race +0.02 810 775
FFDA/F-Race +0.11 810 807
RSD/F-Race −0.05 810 804
I/F-Race −0.03 810 797

RSD/F-Race −0.03 405 399
I/F-Race −0.05 405 399

RSD/F-Race +0.02 202 200
I/F-Race −0.01 202 200

RSD/F-Race +0.02 101 101
I/F-Race +0.02 101 100

3.3 Tuning a Simulated Annealing Algorithm for VRP-SD

In this study, 4 parameters of a simulated annealing algorithm have been tuned:

1. cooling rate, α;
2. a parameter used to compute the number of iterations after which the process

of reheating can be applied, q;
3. another parameter used to compute the number of iterations after which the

process of reheating can be applied, r;
4. parameter used in computing the starting temperature value, f ;

In FFDA/F-Race and FFDR/F-Race, each parameter is allowed to take 3 values
and in the former, the values are chosen close to the values adopted in [7]: α ∈
{0.25, 0.50, 0.75}, q ∈ {1, 5, 10}, r ∈ {20, 30, 40}, f ∈ {0.01, 0.03, 0.05}. Table 5
shows the ranges of the parameters considered for RSD/F-Race and I/F-Race.
In all algorithms, the computational time allowed for evaluating a configuration



120 P. Balaprakash, M. Birattari, and T. Stützle

on an instance is set to 10 seconds. Instances are generated as described in [7];
400 instances were generated for tuning; 200 more instances were generated for
evaluating the winning configuration.

The computational results show that, similar to the previous example, the tun-
ing task is rather easy. Concerning the expected solution cost, the randomized
permutation test cannot reject the null hypothesis that the different algorithms
produce equivalent results. However, it should be noted that the main advan-
tage of RSD/F-Race and I/F-Race is their effectiveness under strong budget
constraints: RSD/F-Race and I/F-Race, given only one-eighth of the computa-
tional budget, achieve expected solution costs that are not significantly different
from FFDR/F-Race and FFDA/F-Race.

4 Related Work

The problem of tuning SLS algorithm is essentially a mixed variable stochas-
tic optimization problem. Even though a number of algorithms exist for mixed
variable stochastic optimization, it is quite difficult to adopt them for tuning.
The primary obstacle is that, since these algorithms have parameters, tuning
them is indeed paradoxical. Few procedures have been developed specifically
for tuning algorithms: Kohavi and John [18] proposed an algorithm that makes
use of best-first search and cross-validation for automatic parameter selection.
Boyan and Moore [19] introduced a tuning algorithm based on machine learning
techniques. The main emphasis of these two works is given only to the pa-
rameter value selection; there is no empirical analysis of these algorithms when
applied to large number of parameters that have wide range of possible val-
ues. Audet and Orban [20] proposed a pattern search technique called mesh
adaptive direct search that uses surrogate models for algorithmic tuning. In this
approach, a conceptual mesh is constructed around a solution and the search
for better solutions is done around this mesh. The surrogates are used to reduce
the computation time by providing an approximation to the original response
surface. Nevertheless, this approach has certain number of parameters and it
has never been used for tuning SLS algorithms. Adenso-Diaz and Laguna [1]
designed an algorithm called CALIBRA specifically for fine tuning SLS algo-
rithms. It uses Taguchi’s fractional factorial experimental designs coupled with
local search. In this work, the authors explicitly mention that tuning a wide
range of possible values for parameters is feasible with their algorithm. How-
ever, a major limitation of this algorithm is that one cannot use it for tuning
SLS algorithms with more than five parameters. Beielstein et al. [21] proposed
an approach to reduce the difficulty of the tuning task. This approach con-
sists in first identifying the parameters that have a significant impact on the
algorithms’ performance through sensitivity analysis and then tuning them. Re-
cently, Hutter et al. [22] proposed an iterated local search algorithm for param-
eter tuning called paramILS. This algorithm is shown to be very effective and
most importantly, it can be used to tune algorithms with a large number of
parameters.
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5 Conclusions and Future Work

We proposed two supplementary procedures for F-Race that are based on random
sampling, RSD/F-Race, and model-based search techniques, I/F-Race. While the
adoption of full factorial design in the F-Race framework is impractical and compu-
tationally prohibitive when used to identify the best from a large number of param-
eter configurations, RSD/F-Race and I/F-Race are useful in such cases. Since the
proposed approaches are quite effective under strong budget constraints, they can
reduce significantly the computational time required for tuning. However, based on
the case studies, we conjecture that the expected solution cost obtained by
RSD/F-Raceand I/F-Race is mainly attributed to the difficulty of the tuning task.

Concerning the future research, we will extend our approach to include cate-
gorical variables. Regarding I/F-Race, we will also investigate the adoption of
distributions like Cauchy and some advanced techniques for updating the distri-
bution. Finally, from the case studies that were made in the paper, we speculate
that the difficulty of the tuning task depends on a number of factors such as
the sensitivity of the parameters that need to be tuned and problem instances
that need to be tackled. In this context, search space analysis on the parameter
values is an area to investigate further.
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elles, Brussels, Belgium (2003) Package available at:
http://cran.r-project.org/src/contrib/Descriptions/race.html
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Abstract. In recent years it has been shown by means of practical ap-
plications that the incorporation of branch & bound concepts within
construction-based metaheuristics can be very useful. In this paper, we
attempt to give an explanation of why this type of hybridization works.
First, we introduce the concepts of primal and dual problem knowledge,
and we show that metaheuristics only exploit the primal problem knowl-
edge. In contrast, hybrid metaheuristic that include branch & bound
concepts exploit both the primal and the dual problem knowledge. After
giving a survey of these techniques, we conclude the paper with an appli-
cation example that concerns the longest common subsequence problem.

1 Introduction

One of the basic ingredients of an optimization technique is a mechanism for
exploring the search space. An important class of algorithms tackles an opti-
mization problem by exploring the search space in form a of a tree, the so-called
search tree. The search tree is generally defined by an underlying solution con-
struction mechanism. Each path from the root node of the search tree to one of
the leafs corresponds to the process of constructing a candidate solution. Inner
nodes of the tree can be seen as partial solutions. The process of moving from
an inner node to one of its child nodes is called a solution construction step, or
extension of a partial solution.

The above mentioned class of algorithms comprises approximate as well as
complete techniques. Examples of approximate methods are ant colony optimiza-
tion (ACO) [6] and greedy randomized adaptive search procedures (GRASP) [7].
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They are iterative algorithms that employ repeated probabilistic solution con-
structions at each iteration. While ACO algorithms include a learning compo-
nent, GRASP algorithms generally do not. An example of a complete method
is branch & bound. An intersting heuristic version of a breadth-first branch &
bound is beam search [15]. While branch & bound (implicitly) considers all nodes
of a certain level of the search tree, beam search restricts the search to a certain
number of nodes based on the bounding information.

Both types of algorithms mentioned above have advantages as well as dis-
advantages. While ACO and GRASP can generally find good solutions in a
reasonable amount of time, they have no mechanism to avoid wasting compu-
tation time by visiting the same solution more than once. Complete techniques
on the other side guarantee to find an optimial solution. However, a user might
not be prepared to accept overly large running times. One relatively recent line
of research deals with the incorporation of features originating from determin-
istic branch & bound derivatives such as beam search into construction-based
metaheuristics. Examples are probabilistic beam search (PBS) [4], Beam-ACO
algorithms [2,3], and approximate and non-deterministic tree search (ANTS)
procedures [12,13,14].

The aims of this paper are twofold. First, we want to give a motivation of
why branch & bound features should be incorporated in construction-based
metaheuristics. This is done by the introduction of different types of problem
knowledge in Section 3. We will show that construction-based metaheuristics and
branch & bound derivatives are complementary in their way of exploiting the
problem knowledge. In Section 4 we give an overview over the existing hybrid
algorithms. The second aim of the paper consists in providing an application
example. This is done in Section 5. Finally, in Section 6 we conclude.

2 A Tree Search Model

The following tree search model captures the essential elements common to all
constructive procedures. In general, we are given an optimization problem P
and an instance x of P . Typically, the search space Sx is exponentially large in
the size of the input x. Without loss of generality we intend to maximize the
objective function f : Sx �→ R

+. The optimization goal is to find a solution
y ∈ Sx to x with f(y) as great as possible. Assume that each element y ∈ Sx can
be viewed as a composition of ly,x ∈ N elements from a set Σ. From this point of
view, Sx can be seen as a set of strings over an alphabet Σ. Any element y ∈ Sx

can be constructed by concatenating ly,x elements of Σ.
The following method for constructing elements of Sx is instructive: A solution

construction starts with the empty string ε. The construction process consists of
a sequence of construction steps. At each construction step, we select an element
of Σ and append it to the current string t. The solution construction may end
for two reasons. First, it may end in case t has no feasible extensions. This
happens when t is already a complete solution, or when no solution of Sx has
prefix t. Second, a solution construction ends in case of available upper bound
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Algorithm 1. Solution construction: SC(f̂)

1: input: the best known objective function value f̂ (might be 0)
2: initialization: v := v0

3: while |C(v)| > 0 and v �= null do
4: w := ChooseFrom(C(v))
5: if UB(w) > f̂ then v := null else v := w endif
6: end while
7: output: v (which is either a complete solution, or null)

information that indicates that each solution with prefix t is worse than any
solution that is already known. Henceforth we denote the upper bound value of
a partial solution t by UB(t).

The application of such an algorithm can be equivalently described as a walk
from the root v0 of the corresponding search tree to a node at level ly,x. The
search tree has nodes for all y ∈ Sx and for all prefixes of elements of Sx. The root
of the tree is the empty string, that is, v0 corresponds to ε. There is a directed
arc from node v to node w if w can be obtained by appending an element of
Σ to v. Note that henceforth we identify a node v of the search tree with its
corresponding string t. We will use both notations interchangably. The set of
nodes that can be reached from a node v via directed arcs are called the children
of v, denoted by C(v). Note, that the nodes at level i correspond to strings of
length i. If w is a node corresponding to a string of length l > 0 then the length
l− 1 prefix v of w is also a node, called the father of w denoted by F(w). Thus,
every y ∈ Sx corresponds to exactly one path of length ly,x from the root node
of the search tree to a specific leaf. The above described solution construction
process is pseudo-coded in Algorithm 1. In the following we assume function
ChooseFrom(C(v)) of this algorithm to be implemented as a probabilistic choice
function.

3 Primal and Dual Problem Knowledge

The analysis provided in the following assumes that there is a unique optimal
solution, represented by leaf node vd of the search tree, also refered to as the
target node. Let us assume that—without loss of generality—the target node vd

is at the maximum level d ≥ 1 of the search tree. A probabilistic constructive
optimization algorithm is said to be successful, if it can find the target node vd

with high probability.
In the following let us examine the success probability of repeated applica-

tions of Algorithm 1 in which function ChooseFrom(C(v)) is implemented as
a probabilisitc choice function. Such solution constructions are employed, for
example, within the ACO metaheuristic. The value of the input f̂ is not impor-
tant for the following analysis. Given any node vi at level i of the search tree,
let p(vi) be the probability that a solution construction process includes node
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vi. Note that there is a single path from v0, the root node, to vi. We denote
the corresponding sequence of nodes by (v0, v1, v2, ..., vi). Clearly, p(v0) = 1
and p(vi) =

∏i−1
j=0 p(vj+1|vj). Hereby, the probabilities p(vj+1|vj) are called

the transition probabilities. Let Success(ρ) denote the event of finding the tar-
get node vd within ρ applications of Algorithm 1. Note that the probability of
Success(ρ) is equal to 1− (1− p(vd))ρ, and it is easy to check that the following
inequalities hold:

1− e−ρp(vd) ≤ 1− (1− p(vd))ρ ≤ ρp(vd) (1)

By (1), it immediately follows that the chance of finding node vd is large if and
only if ρp(vd) is large, namely as soon as

ρ = O (1/p(vd)) . (2)

In the following, we will not assume anything about the exact form of the given
probability distribution. However, let us assume that the transition probabilities
are heuristically related to the attractiveness of child nodes. In other words, we
assume that in a case in which a node v has two children, say w and q, and w
is known (or believed) to be more promising, then p(w|v) > p(q|v). This can
be achieved, for example, by defining the transition probabilities proportional to
the weights assigned by greedy functions.

Clearly, the probability distribution reflects the available knowledge on the
problem, and it is composed of two types of knowledge. If the probability p(vd) of
reaching the target node vd is “high”, then we have a “good” problem knowledge.
Let us call the knowledge that is responsible for the value of p(vd) the primal
problem knowledge (or just primal knowledge). From the dual point of view,
we still have a “good” knowledge of the problem if for “most” of the wrong nodes
(i.e. those that are not on the path from v0 to vd) the probability that they
are reached is “low”. We call this knowledge the dual problem knowledge
(or just dual knowledge). Note that the quality of the dual knowledge grows
with the value f̂ that is provided as input to Algorithm 1. This means, the
better the solution that we already know, the higher is the quality of the dual
knowledge. Observe that the two types of problem knowledge outlined above are
complementary, but not the same. Let us make an example to clarify these two
concepts. Consider the search tree of Figure 1, where the target node is v5. Let
us analyze two different probability distributions:

Case (a). For each v and w ∈ C(v) let p(w|v) = 0.5. Moreover, let us assume
that no upper bound information is available. This means that each solution
construction is performed until a leaf node is reached. When probabilistically
constructing a solution the probability of each child is therefore the same at
each construction step.

Case (b). In general, the transition probabilities are defined as in case (a), with
one exception. Let us assume that the available upper bound indicates that
the subtrees rooted in the black nodes do not contain any better solutions
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v0

v1

v2

v3

v4

v5

Fig. 1. Example of a search tree. v5 is the unique optimal solution

than the ones we already know, that is, UB(v) ≤ f̂ , where v is a black node.
Accordingly, the white children of the black nodes have probability 0 to be
reached.

Note that in both cases the primal knowledge is “scarce”, since the probability
that the target node vd is reached by a probabilistic solution construction de-
creases exponentially with d, that is, p(vd) = 2−d. However, in case (b) the
dual knowledge is “excellent”, since for most of the wrong nodes (i.e. the white
nodes), the probability that any of them is reached is zero. Viceversa, in case (a)
the dual knowledge is ”scarce”, because there is a relatively “high” probability
that a white node is reached.

By using the intuition given by the provided example, let us try to better
quantify the quality of the available problem knowledge. Let Vi be the set of
nodes at level i, and let

�(i) =
∑

v∈Vi

p(v), i = 1, . . . , d . (3)

Note that �(i) is equal to the probability that the solution construction process
reaches level i of the search tree. Observe that the use of the upper bound in-
formation makes the probabilities �(i) smaller than one. Case (b) was obtained
from case (a) by decreasing �(i) (for i = 1, . . . , d) down to 2i−1 (and without
changing the probability p(vi) of reaching the ancestor vi of the target node at
level i), whereas in case (a) it holds that �(i) = 1 (for i = 1, . . . , d). In general,
good dual knowledge is supposed to decrease �(i) without decreasing the prob-
ability of reaching the ancestor vi of the target node vd. This discussion may
suggest that a characterization of the available problem knowledge can be given
by the following knowledge ratio:

Kvd
= min

1≤i≤d

p(vi)
�(i)

(4)
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The larger this ratio the better the knowledge we have on the target node vd. In
case (a) it is Kvd

= 1/2d, whereas the knowledge ratio of case (b) is Kvd
= 1/2,

which is exponentially larger.
Finally, it is important to observe that the way of (repeatedly) constructing

solutions in a probabilistic way (as in Algorithm 1) does not exploit the dual
problem knowledge. For example in case (b), although the available knowledge
is “excellent”, the target node vd is found after an expected number of runs that
is proportional to 1/Pr[vd] = 2d (see Equation (2)), which is the same as in case
(a). In other words, the number of necessary probabilistic solution constructions
only depends on the primal knowledge.

4 How to Exploit the Dual Knowledge?

The problem of Algorithm 1 is clearly the following one: When encountering
a partial solution whose upper bound is less or equal to the value of the best
solution found so far, the construction process is aborted, and the computation
time invested in this construction is lost. Generally, this situation may occur
very often. In fact, the probability for the abbortion of a solution construction
is 1−p(vd) in the example outlined in the previous section, which is quite high.

In the following let us examine a first simple extension of Algorithm 1. The
corresponding algorithm—henceforth denoted by PSC(α,f̂)—is pseudo-coded in
Algorithm 2. Hereby, α denotes the maxiumum number of allowed extensions of
partial solutions at each construction step; in other words, α is the maximum
number of solutions to be constructed in parallel. We use the following additional
notation: For any given set S of search tree nodes let C(S) be the set of children
of the nodes in S. Morever, Bi denotes the set of reached nodes of tree level i.
Recall that the root node v0 is the only node at level 0.

The algorithm works as follows. Given the selected nodes Bi of level i (with
|Bi| ≤ α)), the algorithm probabilistically chooses at most α solutions from
C := C(Bi), the children of the nodes in Bi. The probabilistic choice of a child
is performed in function ChooseFrom(C) proportionally to the following proba-
bilities:

p(w|C) =
p(w|F(w))∑

v∈C

p(v|F(v))
, ∀ w ∈ C (5)

Remember that F(w) denotes the father of node w. After chosing a node w it
is first checked if w is a complete solution, or not. In case it is not a complete
solution, it is checked if the available bounding information allows the further
extension of this partial solution, in which case w is added to Bi+1. However, if
w is already a complete solution, it is checked if its value is better than the value
of the best solution found so far. The algorithm returns the best solution found,
in case it is better than the f̂ value that was provided as input. Otherwise the
algorithm returns null.
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Algorithm 2. Parallel solution construction: PSC(α,f̂)

1: input: α ∈ Z
+, the best known objective function value f̂

2: initialization: i := 0, Bi := {v0}, z := null
3: while Bi �= ∅ do
4: Bi+1 := ∅
5: C := C(Bi)
6: for k = 1, . . . , min{α, |C(Bi)|} do
7: w := ChooseFrom(C)
8: if |C(w)| > 0 then
9: if UB(w) > f̂ then Bi+1 := Bi+1 ∪ {w} end if

10: else
11: if f(w) > f̂ then z := w, f̂ := f(z) end if
12: end if
13: C := C \ {w}
14: end for
15: i := i + 1
16: end while
17: output: z (which might be null)

Observe that when α = 1, PSC(α,f̂) is equivalent to SC(f̂). In contrast,
when α > 1 the algorithm constructs (maximally) α solutions non-independently
in parallel. Concerning the example outlined in the previous section with the
probability distribution as defined in case(b), we can observe that algorithm
PSC(α,f̂) with α > 1 solves this problem even within one application. This
indicates that algorithm PSC(α,f̂), in contrast to algorithm SC(f̂), benefically
uses the dual problem knowledge.

4.1 Probabilistic Beam Search

For practical optimization, algorithm PSC(α,f̂) has some drawbacks. First, in
most cases algorithms for optimization are applied with the goal of finding a
solution as good as possible, without having a clue beforehand about the value
of good solutions. Second, the available upper bound function might not be very
tight. For both reasons, solution constructions that lead to unsatisfying solutions
are discarded only at very low levels of the search tree, that is, close to the leafs.
Referring to the example of Section 3, this means that black nodes will only
appear close to the leafs. In those cases, algorithm PSC(α,f̂) will have practically
no advantage over algorithm SC(f̂). It might even have a disadvantage due to
the amount of computation time invested in choosing children from bigger sets.

The following simple extension can help in overcoming the drawbacks of algo-
rithm PSC(α,f̂). At each algorithm iteration we allow the choice of μ · α nodes
from Bi, instead of α nodes. μ ≥ 1 is a parameter of the algorithm. Moreover,
after the choice of the child nodes we restrict set Bi+1 to the (maximally) α best
solutions with respect to the upper bound information. This results in a so-called
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(probabilistic) beam search algorithm, henceforth denoted by PBS(α,μ,f̂). Note
that algorithm PBS(α,μ,f̂) is a generalization of algorithm PSC(α,f̂), that is,
when μ = 1 both algorithms are equivalent. Algorithm PBS(α,μ,f̂) is also a
generalization of algorithm SC(f̂), which is obtained by α = μ = 1.

4.2 Adding a Learning Component to PBS(α,μ,f̂)

In general, algorithm PBS(α,μ,f̂) can be expected to produce good solutions
if (at least) two conditions are fullfilled: Neither the greedy function nor the
upper bound function are misleading. In both cases the algorithm might not
be able to find solutions above a certain threshold. One possibility of avoiding
this drawback is to add a learning component to algorithm PBS(α,μ,f̂), that is,
adding a mechanism that is supposed to adapt the primal knowledge, the dual
knowledge, or both, over time, based on accumulated search experience.

Ant colony optimization (ACO) [6] is the most prominent construction-based
metaheuristic that attempts to learn the primal problem knowledge during run-
time. ACO is inspired by the foraging behavior of ant colonies. At the core of this
behavior is the indirect communication between the ants by means of chemical
pheromone trails, which enables them to find short paths between their nest
and food sources. This characteristic of real ant colonies is exploited in ACO
algorithms in order to solve, for example, combinatorial optimization problems.

In general, the ACO approach attempts to solve an optimization problem by
iterating the following two steps. First, α candidate solutions are probabilistically
constructed. Second, the constructed solutions are used to modifiy the primal
problem knowledge. While standard ACO algorithms use α applications of algo-
rithm SC(f̂) at each iteration for the probabilistic construction of solutions, the
idea of Beam-ACO [2,3] is to use one application of probabilistic beam search
PBS(α,μ,f̂) instead. A related ACO approach is labelled ANTS (see [12,13,14]).
The characterizing feature of ANTS is the use of upper bound information for
defining the primal knowledge. The latest version of ANTS [14] uses at each
iteration algorithm PSC(α,f̂) to construct candidate solutions.

5 Example: The Longest Common Subsequence Problem

The longest common subsequence (LCS) problem is one of the classical string
problems. Given a problem instance (S, Σ), where S = {s1, s2, . . . , sn} is a set
of n strings over a finite alphabet Σ, the problem consists in finding a longest
string t∗ that is a subsequence of all the strings in S. Such a string t∗ is called a
longest common subsequence of the strings in S. Note that a string t is called a
subsequence of a string s, if t can be produced from s by deleting characters. For
example, dga is a subsequence of adagtta. If n = 2 the problem is polynomially
solvable, for example, by dynamic programming [9]. However, when n > 2 the
problem is in general NP-hard [11]. Traditional applications of this problem
are in data compression, syntactic pattern recognition, and file comparison [1],
whereas more recent applications also include computational biology [16].



Using Branch & Bound Concepts in Construction-Based Metaheuristics 131

sA
1︷ ︸︸ ︷

a c b c a d

sB
1︷ ︸︸ ︷

b b d

p1 1b 1d

(a) String s1

sA
2︷ ︸︸ ︷

c a b d a c d

sB
2︷︸︸︷

c d

p2 2c2d

(b) String s2

sA
3︷ ︸︸ ︷

b a b c d

sB
3︷ ︸︸ ︷

d a a b

p3 3d3a 3b

(c) String s3

Fig. 2. Given is the problem instance (S = {s1, s2, s3}, Σ = {a, b, c, d}) where s1 =
acbcadbbd, s2 = cabdacdcd, and s3 = babcddaab. Let us assume that t = abcd. (a), (b),
and (c) show the corresponding division of si into sA

i and sB
i , as well as the setting of

the pointers pi and the next positions of the 4 letters in sB
i . Note that in case a letter

does not appear in sB
i (for example, letter a does not appear in sB

1 ), the corresponding
pointer is set to ∞. For example, as letter a does not appear in sB

1 , we set 1a :=∞.

5.1 Probabilistic Beam Search for the LCS Problem

In order to apply algorithm PBS(α,μ,f̂) to the LCS problem, we have to define
the solution construction mechanism, the greedy function that defines the primal
knowledge, and the upper bound function that defines the dual knowledge. We
use the construction mechanism of the so-called Best-Next heuristic [8,10]
for our algorithm. Given a problem instance (S, Σ), this heuristic produces a
common subsequence t sequentially by appending at each construction step a
letter to t such that t maintains the property of being a common subsequence of
all strings in S. Given a common subsequence t of the strings in S, we explain
in the following how to derive the children of t. For that purpose we introduce
the following notations:

1. Let si = sA
i ·sB

i be the partition of si into substrings sA
i and sB

i such that t is
a subsequence of sA

i and sB
i has maximal length. Given this partition, which

is well-defined, we introduce position pointers pi := |sA
i | for i = 1, . . . , n (see

Figure 2 for an example).
2. The position of the first appearance of a letter a ∈ Σ in a string si ∈ S after

the position pointer pi is well-defined and denoted by ia. In case a letter
a ∈ Σ does not appear in sB

i , ia is set to ∞ (see Figure 2).
3. A letter a ∈ Σ is called dominated, if there exists at least one letter b ∈ Σ

such that ib < ia for i = 1, . . . , n;
4. Σnd

t ⊆ Σ henceforth denotes the set of non-dominated letters of the alphabet
Σ with respect to a given t. Moreover, for all a ∈ Σnd

t it is required that
ia <∞, i = 1, . . . , n. Hence, we require that in each string si a letter a ∈ Σnd

t

appears at least once after position pointer pi.

The children C(t) of a node t are then determined as follows: C(t) := {v = ta |
a ∈ Σnd

t }. The primal problem knowledge is derived from the greedy function
η(·) that assigns to each child v = ta ∈ C(t) the following greedy weight:

η(v) = min{|si| − ia | i = 1, . . . , n} (6)

The child with the highest greedy weight is considered the most promising one.
Instead of the greedy weights themselfs, we will use the corresponding ranks.
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More in detail, the child v = ta with the highest greedy weight will be assigned
rank 1, denoted by r(v) = 1, the child w = tb with the second-hightest greedy
weight will be assigned rank 2 (that is, r(w) = 2), and so on.

In the following we explain the implementation of function ChooseFrom(C) of
algorithm PBS(α,μ,f̂). Remember that C denotes the set of children obtained
from the nodes that are contained in the beam Bi (that is, C := C(Bi)). For
evaluating a child v ∈ C we use the sum of the ranks of the greedy weights
that correspond to the construction steps performed to construct string v. Let
us assume that v is on the i-th level of the search tree, and let us denote the
sequence of characters that forms string v by v1 . . . vi, that is, v = v1 . . . vi. Then,

ν(v) :=
i∑

j=1

r(v1 . . . vj) , (7)

where v1 . . . vj denotes the substring of v from position 1 to postion j. With this
definition, Equation 5 can be defined for the LCS problem as follows:

p(v|C) =
ν(v)−1

∑
w∈C ν(w)−1

, ∀ v ∈ C (8)

Finally, we outline the upper bound function UB(·) that the PBS(α,μ,f̂) algo-
rithm requires. Remember that a given subsequence t splits each string si ∈ S
into a first part sA

i and into a second part sB
i , that is, si = sA

i · sB
i . Henceforth,

|sB
i |a denotes the number of occurences of letter a in sB

i for all a ∈ Σ. Then,

UB(t) := |t|+
∑

a∈Σ

min{|sB
i |a | i = 1, . . . , n} . (9)

In words, for each letter a ∈ Σ we take the minimum of the occurences of a
in sB

i , i = 1, . . . , n. Summing up these minima and adding the result to the
length of t results in the upper bound. This completes the description of the
implementation of the PBS(α,μ,f̂) algorithm for the LCS problem.

In the following, we use algorithm PBS(α,μ,f̂) in two different ways: First,
we use PBS(α,μ,f̂) in a multi-start fashion as shown in Algorithm 3, denoted
by MS-PBS(α,μ). Second, we use PBS(α,μ,f̂) within a Beam-ACO algorithm as
explained in the following.

5.2 Beam-ACO for the LCS Problem

The first step of defining a Beam-ACO approach—and, in general, any ACO
algorithm—consists in the specification of the set of pheromone values T . In the
case of the LCS problem T contains for each position j of a string si ∈ S a
pheromone value 0 ≤ τij ≤ 1, that is, T = {τij | i = 1, . . . , n, j = 1, . . . , |si|}.
A value τij ∈ T indicates the desirability of adding the letter at position j of
string i to a solution: the greater τij , the greater is the desirability of adding
the corresponding letter. In addition to the definition of the pheromone values,
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Algorithm 3. Multi-start probabilistic beam search: MS-PBS(α,μ)

1: input: α, μ ∈ Z
+

2: z := null
3: f̂ := 0
4: while CPU time limit not reached do
5: v := PBS(α,μ,f̂) {see Section 4.1}
6: if v �= null then z := v, f̂ := |z|
7: end while
8: output: z

we also introduce a solution representation that is more suitable for ACO. Any
common subsequence t of the strings in S can be translated into an ACO-solution
T = {Tij ∈ {0, 1} | i = 1, . . . , n, j = 1, . . . , |si|} where Tij = 0 if the letter at
position j of string si was not added to t during the solution construction, and
Tij = 1 otherwise. Note that the translation of t into T is well-defined due to the
construction mechanism. For example, given solution t = abcdd for the problem
instance of Figure 2, the corresponding ACO-solution is T1 = 101101001, T2 =
011001101, and T3 = 011111000, where Ti refers to the sequence Ti1 . . . Ti|si|. In
the following, for each given solution, the lower case notation refers to its string
representation, and the upper case notation refers to its binary representation.

The particular ACO framework that we used for our algorithm is the so-called
MMAS algorithm implemented in the hyper-cube framework (HCF); see [5].
A high level description of the algorithm is given in Algorithm 4. The data
structures used, in addition to counters and to the pheromone values, are: (1)
the best-so-far solution T bs, i.e., the best solution generated since the start of the
algorithm; (2) the restart-best solution T rb, that is, the best solution generated
since the last restart of the algorithm; (3) the convergence factor cf, 0 ≤ cf ≤ 1,
which is a measure of how far the algorithm is from convergence; and (4) the
Boolean variable bs update, which becomes true when the algorithm reaches
convergence.

Roughly, the algorithm works as follows. First, all the variables are initial-
ized. In particular, the pheromone values are set to their initial value 0.5. Each
algorithm iteration consists of the following steps. First, algorithm PBS(α,μ,f̂)
is applied with f̂ = 0 to generate a solution T pbs. The setting of f̂ = 0 is chosen,
because in ACO algorithms it is generally useful to learn also from solutions
that are worse than the best solution found so far. The only change in algorithm
PBS(α,μ,f̂) occurs in the definition of the choice probabilities. Instead of using
Equation 8, these probabilities are now defined as follows:

p(v = ta|C) =

(
min

i=1,...,n
{τiia} · ν(v)−1

)

∑
w=tb∈C

(
min

i=1,...,n
{τiib
} · ν(w)−1

) , ∀ v = ta ∈ C (10)
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Algorithm 4. Beam-ACO for the LCS problem
1: input: α, μ ∈ Z

+

2: T bs := null, T rb := null, cf := 0, bs update := false
3: τij := 0.5, i = 1, . . . , n, j = 1, . . . , |si|
4: while CPU time limit not reached do
5: T pbs := PBS(α,μ,0) {see Section 4.1}
6: if |tpbs| > |trb| then T rb := T pbs

7: if |tpbs| > |tbs| then T bs := T pbs

8: ApplyPheromoneUpdate(cf ,bs update,T ,T pbs,T rb,T bs)
9: cf := ComputeConvergenceFactor(T )

10: if cf > 0.99 then
11: if bs update = true then
12: τij := 0.5, i = 1, . . . , n, j = 1, . . . , |si|
13: T rb := null
14: bs update := false
15: else
16: bs update := true
17: end if
18: end if
19: end while
20: output: tbs (that is, the string version of ACO-solution T bs)

Remember in this context, that ia was defined as the next position of letter a
after position pointer pi in string si. The intuition of choosing the minimum of
the pheromone values corresponding to the next positions of a letter in the n
given strings is as follows: If at least one of these pheromone values is low, the
corresponding letter should not yet be appended to the string, because there is
another letter that should be appended first.

The second action at each iteration concerns the pheromone update conducted
in the ApplyPheromoneUpdate(cf , bs update, T , T pbs, T rb, T bs) procedure. Third,
a new value for the convergence factor cf is computed. Depending on this value,
as well as on the value of the Boolean variable bs update, a decision on whether
to restart the algorithm or not is made. If the algorithm is restarted, all the
pheromone values are reset to their initial value (that is, 0.5). The algorithm
is iterated until the CPU time limit is reached. Once terminated, the algorithm
returns the string version tbs of the best-so-far ACO-solution T bs. In the following
we describe the two remaining procedures of Algorithm 4 in more detail.

ApplyPheromoneUpdate(cf ,bs update,T ,T pbs,T rb,T bs): In general, three solutions
are used for updating the pheromone values. These are the solution T pbs gen-
erated by the PBS algorithm, the restart-best solution T rb, and the best-so-far
solution T bs. The influence of each solution on the pheromone update depends
on the state of convergence of the algorithm as measured by the convergence
factor cf. Each pheromone value τij ∈ T is updated as follows:

τij := τij + ρ · (ξij − τij) , (11)
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where
ξij := κpbs · T pbs

ij + κrb · T rb
ij + κbs · T bs

ij , (12)

where κpbs is the weight (that is, the influence) of solution T pbs, κrb is the weight
of solution T rb, κbs is the weight of solution T bs, and κpbs + κrb + κbs = 1. Af-
ter the pheromone update rule (Equation 11) is applied, pheromone values that
exceed τmax = 0.999 are set back to τmax (similarly for τmin = 0.001). This is
done in order to avoid a complete convergence of the algorithm, which is a situ-
ation that should be avoided. Equation 12 allows to choose how to schedule the
relative influence of the three solutions used for updating the pheromone val-
ues. For our application we used a standard update schedule as shown in Table 1.

Table 1. Setting of κpbs, κrb, κbs, and ρ depending on the convergence factor cf and
the Boolean control variable bs update

bs update = false bs update

cf < 0.4 cf ∈ [0.4, 0.6) cf ∈ [0.6, 0.8) cf ≥ 0.8 = true

κib 1 2/3 1/3 0 0

κrb 0 1/3 2/3 1 0

κbs 0 0 0 0 1

ρ 0.2 0.2 0.2 0.15 0.15

ComputeConvergenceFactor(T ): The convergence factor cf , which is a function
of the current pheromone values, is computed as follows:

cf := 2

⎛

⎜⎝

⎛

⎜⎝

∑
τij∈T

max{τmax − τij , τij − τmin}

|T | · (τmax − τmin)

⎞

⎟⎠− 0.5

⎞

⎟⎠

In this way, cf = 0 when the algorithm is initialized (or reset), that is, when
all pheromone values are set to 0.5. On the other side, when the algorithm has
converged, then cf = 1. In all other cases, cf has a value in (0, 1). This completes
the description of our Beam-ACO approach for the LCS problem.

5.3 Experimental Results

We implemented algorithms MS-PBS(α,μ) and Beam-ACO in ANSI C++ using
GCC 3.2.2 for compiling the software. The experimental results that we outline
in the following were obtained on a PC with an AMD64X2 4400 processor and
4 Gigabyte of memory. We applied algorithm MS-PBS(α,μ) with three different
settings:

1. α = μ = 1: The resulting algorithm corresponds to a multi-start version of
algorithm SC(f̂); see Algorithm 1. In the following we refer to this algorithm
as MS-SC.
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2. α = 10, μ = 1: This setting corresponds to a multi-start version of algorithm
PSC(α,f̂); see Algorithm 2. We refer henceforth to this algorithm as MS-
PSC.

3. α = 10, μ > 1: These settings generate a multi-start version of algorithm
PBS(α,μ,f̂); see Section 4.1. This algorithm version is referred to simply as
MS-PBS. Note that we made the setting of μ depended on the alphabet
size, that is, the number of expected children of a partial solution.

In addition we applied Beam-ACO with α = 10 and with the same settings for
μ as chosen for MS-PBS.

For the experimentation we used a set of benchmark instances that was gener-
ated as follows. Given h ∈ {100, 200, . . . , 1000} and Σ (where |Σ| ∈ {2, 4, 8, 24}),
an instance is produced as follows. First, a string s of length h is produced ran-
domly from the alphabet Σ. String s is in the following called base string. Each
instance contains 10 strings. Each of these strings is produced from the base
string s by traversing s and by deciding for each letter with a probabilitiy of
0.1 whether to remove it, or not. Note that the 10 strings of such an instance
are not necessarily of the same length. As we produced 10 instances for each
combination of h and |Σ|, 400 instances were generated in total. Note that the
values of optimal solutions of these instances are unknown. However, a lower
bound is obtained as follows. While producing the 10 strings of an instance, we
record for each position of the base string s, whether the letter at that position
was removed for the generation of at least one of the 10 strings. The number
of positions in s that were never removed constitutes the lower bound value
henceforth denoted by LBI with respect to an instance I.

We applied each of the 4 algorithms exactly once for h/10 seconds to each
problem instance. We present the results averaged over the 10 instances for each
combination of h (the length of the base string that was used to produce an
instance), and the alphabet size |Σ|. Two measures are presented:

1. The (average) length of the solutions expressed in percent deviation from the
respective lower bounds, which is computed as ((f/LBI)− 1) · 100, where f
is the length of the solution achieved by the respective algorithm.

2. The computation time of the algorithms, which refers to the time the best so-
lution was found within the given CPU time (averaged over the 10 instances
of each type).

The results are shown graphically in Figure 3. The graphics on the left hand
side show the algorithm performance (in percentage deviation from the lower
bound), and the graphics on the right hand side show the computation times.
The following observations are of interest. First, while having a comparable
computation time, algorithm MS-PBS is always clearly better than algorithms
MS-PSC and MS-SC. Second, algorithm Beam-ACO is consistently the best
algorithm of the comparison. This shows that it can pay off adding a learning
component to algorithm (MS-)PBS. The advantage of Beam-ACO over MS-PBS
grows with growing alphabet size, that is, with growing problem complexity.
This advantage of Beam-ACO comes with a slight increase in computational
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Fig. 3. Results and computation times of algorithms MS-SC, MS-PSC, MS-PBS, and
Beam-ACO
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cost. However, this is natural: due to the learning component, Beam-ACO has a
higher probability than MS-PBS of improving on the best solution found even at
late stages of a run. Finally, a last interesting remark concerns the comparison
of MS-PSC with MS-SC. Despite of the construction of solutions in parallel,
MS-PSC is always slightly beaten by MS-SC. This is due to fact that the used
upper bound function is not tight at all. Hence, constructing solutions in parallel
in the way of algorithm (MS-)PSC is rather a waste of computation time.

6 Conclusions

In this paper we have first given a motivation for the use of branch & bound con-
cepts within construction based metaheuristics such as ant colony optimization.
In this context we have introduced the definitions of primal and dual problem
knowledge. Then we have shown that a certain way of using branch & bound
concepts leads to the parallel and non-independent construction of solutions.
A prominent example is probabilistic beam search. An extension of probabilis-
tic beam search is obtained by adding a learning component that modifies the
primal problem knowledge over time. Finally, we have implemented these algo-
rithms on the example of the longest common subsequence problems. The results
confirmed our earlier considerations on the advantage of the proposed hybrids
over standard algorithms.
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Abstract. The problem of computing a good approximation set of the
Pareto front of a multiobjective optimization problem can be recasted as
the maximization of its S-metric value, which measures the dominated
hypervolume. In this way, the S-metric has recently been applied in a
variety of metaheuristics. In this work, a novel high-precision method for
computing approximation sets of a Pareto front with maximal S-Metric
is proposed as a high-level relay hybrid of an evolutionary algorithm and
a gradient method, both guided by the S-metric. First, an evolutionary
multiobjective optimizer moves the initial population close to the Pareto
front. The gradient-based method takes this population as its starting
point for computing a local maximal approximation set with respect to
the S-metric. Thereby, the population is moved according to the gradient
of the S-metric.

This paper introduces expressions for computing the gradient of a
set of points with respect to its S-metric on basis of the gradients of
the objective functions. It discusses singularities where the gradient is
vanishing or differentiability is one sided. To circumvent the problem of
vanishing gradient components of the S-metric for dominated points in
the population a penalty approach is introduced.

In order to test the new hybrid algorithm, we compute the precise
maximizer of the S-metric for a generalized Schaffer problem and show,
empirically, that the relay hybrid strategy linearly converges to the pre-
cise optimum. In addition we provide first case studies of the hybrid
method on complicated benchmark problems.

1 Introduction and Mathematical Preliminaries

In multiobjective optimization, a solution has to fulfill several objectives in the
best possible way. Maximization problems can be reformulated as minimization
problems, thus, without loss of generality, we can restrict our attention to those.
Formally, the problem reads as follows:

f = (f1, . . . , fm)T , f1(x)→ min, . . . , fm(x)→ min, x ∈ X . (1)

T. Bartz-Beielstein et al. (Eds.): HM 2007, LNCS 4771, pp. 140–156, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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The domain X is called the decision space or search space and contains all feasible
solutions, and the co-domain Y of all m objectives is called objective space. Here
we assume continuous functions, so X ⊆ R

d and Y ⊆ R
m.

Since the objectives are typically conflicting, there is no single best solution
and the aim is to generate sets of good compromise solutions. These solutions
are suggestions to the decision maker who finally chooses one for realization.

A partial order holds among the points, which is defined in the objective
space and is transferred to the preimages in the search space. A point x is said
to (weakly) dominate a point x′ (x ≺ x′), iff f(x) �= f(x′) and ∀i ∈ {1, . . . , m} :
fi(x) ≤ fi(x′). A point x strictly dominates a point x′ (x < x′), iff ∀i =
1, . . . , m : fi(x) < fi(x′). The points that are minimal with respect to the partial
order ≺ within a set are called non-dominated. The non-dominated points within
the whole search space are called efficient set or Pareto set XE and the set of
their corresponding images is called Pareto front YN .

Since continuous problems cannot be expected to be solved optimally, a good
approximation of the Pareto front is aspired. Two sets are already incompa-
rable, if one set contains a point that is incomparable to each point of the
other set. Thus, a qualitative ranking is mostly impossible. Instead, auxiliary
demands which suggest high quality are formulated for sets, such as: (1) many
non-dominated points, (2) closeness to Pareto front, and (3) well-distributed
along the Pareto front. From our point of view the term well-distributed means
to have a regular spacing between points in regions with similar trade-off and a
higher concentration of points in regions with a more balanced trade-off among
the objectives.

Among the developed quality measures, the S-metric or dominated hypervol-
ume by Zitzler and Thiele [1] is of utmost importance. It is defined as

S(X) = Lebesgue{y | ∃y(i) : y(i) ≺ y ∧ y ≺ yref}, (2)

where y(i) = f(x(i)) are the image points of the set X ⊆ X under f , and X
is an approximation of the Pareto set. The reference point yref confines the
dominated hypervolume. Note that the same definition can be used to define the
S-metric for subsets of R

m directly. It is an alleged drawback that the reference
point influences the absolute value of the metric. However, in practical settings
it is often possible to state bounds for the objective function values and thus the
reference point can be chosen as that upper bound vector. In addition, recent
results on generalizations of the S-metric show, that the distribution of points
on the Pareto front can be influenced by weighting parameters according to the
user’s preferences [2].

The maximal S-metric value is achieved by the Pareto front. For compact
image sets of f and appropriately chosen reference points the maximization of
the S-metric for a given number of points always results in a non-dominated set
of solutions. Further properties of the S-metric were studied by Fleischer [3] and
Zitzler et al. [4].

The maximization of the S-metric receives increasingly more attention as a
solution principle for approximating Pareto fronts by means of a well-distributed
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non-dominated set. Recently, the S-metric has been used as a single-objective
substitute function to guide the process of multiobjective optimizers. Accord-
ingly, the problem of finding a good approximation of the Pareto front of the
original multiobjective optimization problem can be re-stated as:

S(X)→ max, X ⊆μ X (3)

where X ⊆μ X means that X is a set of at most μ elements from X .
Recent work proposed methods for S-metric maximization that are based on

simulated annealing, particle swarms, and evolutionary algorithms. Evolution-
ary multiobjective optimization algorithms (EMOA, MOEA) [5,6] established as
efficient and robust optimizers and modern EMOA like IBEA [7], ESP [8], and
SMS-EMOA successfully apply an S-metric based function to evaluate and select
promising solutions, or use it for archiving [9]. The SMS-EMOA by Emmerich
et al. [10] uses the S-metric in the selection method of a steady-state EMOA. It
has been tested extensively on benchmarks and real-world applications, receiv-
ing results competitive or better than state-of-the-art methods in the field. In
this paper we continue in the same spirit, and derive a gradient based method
for solving multiobjective problems.

In this work the gradient of the S-metric at a point, representing an approx-
imation set, is introduced to solve the optimization problem of positioning the
given μ points of the set such that the S-metric value of the set is maximized.
Using this gradient, we apply a simple steepest ascent method. We propose a
hybridization of the gradient method with SMS-EMOA as a high-level relay (cf.
Talbi [11]), meaning that autonomous algorithms are executed sequentially. The
gradient method is applied after SMS-EMOA to locally optimize its final popula-
tion. Thus, we combine efficient local optimization based on a new gradient-based
method, with more exhaustive global optimization techniques.

As opposed to previous work on gradient based multiobjective optimization
(e.g. [12,13,14,15,16]) this approach does not use gradients to improve points
of the population independent of each other but, by aiming at improving the
S-metric (that considers the population as one aggregate), it looks at the distri-
bution of the entire population.

The paper is structured as follows. In Section 2 expressions of the gradient
of the S-metric are derived and discussed. In Section 3 the maximal S-metric is
determined analytically to verify the gradient formulation. Section 4 introduces
a steepest descent gradient method for S-metric maximization. Afterward, the
hybridization of this method with the evolutionary algorithm SMS-EMOA is
proposed and studied on multimodal test problems (Section 5). The new methods
form starting points for further studies. A summary of the results and discussion
of open questions is provided in Section 6.

2 Gradient of the S-Metric

In this section we discuss expressions for gradient computation with respect to
the S-metric and discuss its differentiability properties.



Gradient-Based/Evolutionary Relay Hybrid 143

2.1 Mathematical Notation

In order to compute gradients of the S-metric, we represent a population P of
size μ, P ⊆μ X , as a vector of length μ · d:

p = (x(1)
1 , . . . , x

(1)
d , . . . , x

(μ)
1 , . . . , x

(μ)
d )� = (p1, . . . , pμ·d)�.

For notational convenience we introduce blocks of a μd-vector as

Π(i,p) = (x(i)
1 , . . . , x

(i)
d ) = (p(i−1)·d+1 . . . pi·d).

The mapping from μd-vectors to populations is defined as:

Ψ(p) = { (x(i)
1 , . . . , x

(i)
d )� | i ∈ {1, . . . , μ} }. (4)

Different μd-vectors may represent the same population (but not vice-versa).
Every non-empty population P ⊆μ X is represented by at least one tuple of the
form above.

For optimization purposes it is sufficient to work with μd-vectors. This holds,
because the set of global optima of the problem

S(Ψ(p))→ max, subject to Ψ(p) ⊆μ X , p ∈ R
μd (5)

can be mapped to the set of global optima of the original problem (Eq. 3)
via Ψ . Note that for X = R

d the constraint Ψ(p) ⊆μ X is trivially fulfilled.
Moreover, the number of local optima of the new problem is usually increased,
as different μd-vectors may give rise to the same population. Given one μd-vector,
all equivalent representations can be obtained by permuting its blocks.

2.2 Definition and Analytical Calculation of S-Metric’s Gradient

A general definition of the gradient for the space of μd-vectors is

∇pS = (
∂S
∂p1

, . . . ,
∂S

∂pμ·d
)� (6)

In order to express the gradient of the S-metric in terms of the gradients of the
objective functions the following structure of the composition of mappings is
applied:

R
μ·d F−→︸︷︷︸

decision to objective space

R
μ·m S−→︸︷︷︸

objective space to S-metric

R
+. (7)

where F is defined by using the objective functions f = (f1, f2, · · · , fm)� so that
F(x(1), · · · ,x(μ)) = (f(x(1)), f(x(2)), · · · , f(x(μ)))� with the functions fi defined
as above and S as the S-metric function.

The S-metric is defined on sets of points (Eq. 2), but for notational conve-
nience, we also apply it directly to vectors which can be interpreted as sets
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according to the mapping Ψ (Eq. 5). Using the chain rule the gradient can be
rewritten as follows. Let x(1),x(2), · · · ,x(μ) be μ points in the decision space,
then ∇S(p) can be written as:

S′ at

⎛

⎜⎜⎝

f(x(1))
f(x(2))
· · ·

f(x(μ))

⎞

⎟⎟⎠ ◦

⎛

⎜⎜⎜⎝

f ′ at x(1) 0 0 · · · 0
0 f ′ at x(2) 0 · · · 0
...

...
... · · · ...

0 0 0 0 f ′ at x(μ)

⎞

⎟⎟⎟⎠ (8)

The top level structure of the matrix associated to the linear mapping F′ is a
diagonal matrix of size μ whose diagonal elements are matrices of size m × d
associated to the linear maps f ′ at x(j), where j = 1, 2, · · · , μ and each of the
off-diagonal elements is the zero matrix of size m× d as well.

A more detailed description of this matrix is given as:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂S
∂y

(1)
1
.
.
.

∂S
∂y

(1)
m

.

.

.
∂S

∂y
(μ)
1
.
.
.

∂S
∂y

(μ)
m

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

︸ ︷︷ ︸
∇S(y(1),...,y(μ))

·

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂f1(x(1))

∂x
(1)
1

· · · ∂f1(x(1))

∂x
(1)
d

0 · · · 0 0 · · · 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
∂fm(x(1))

∂x
(1)
1

· · · ∂fm(x(1))

∂x
(1)
d

0 · · · 0 0 · · · 0

0 · · · 0
.
.
. · · ·

.

.

. 0 · · · 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 · · · 0
.
.
. · · ·

.

.

. 0 · · · 0

0 · · · 0 0 · · · 0
∂f1(x(μ))

∂x
(μ)
1

· · · ∂f1(x(μ))

∂x
(μ)
d

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 · · · 0 0 · · · 0 ∂fm(x(μ))

∂x
(μ)
1

· · · ∂fm(x(μ))

∂x
(μ)
d

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
F′(x(1),...,x(μ))

(9)

Note that F′(x(1), . . . ,x(μ)) depends solely on the gradient functions ∇fi at the
sites x(1), . . . ,x(μ). Hence, if these m · μ local gradients are known, the desired
gradient ∇S(p) can be computed.

The computation of ∇S(y(1), . . . ,y(μ)) is discussed next. Three cases of the
set {y(1), . . . ,y(μ)} need to be considered: (1) mutually non-dominated sets, (2)
sets with strictly dominated points, and (3) sets with weakly dominated points.

(1) Mutually non-dominated sets. For m = 1 holds ∂S
∂y

(i)
1

= 1, and for m = 2

holds (assuming vectors are sorted y(i) in descending order of f):

∂S
∂y

(i)
1

= y
(i−1)
2 − y

(i)
2 and

∂S
∂y

(i)
2

= y
(i−1)
1 − y

(i)
1 , i = 1, . . . , μ (10)

as illustrated in Fig. 1. Note that extremal points need special treatment, as
their contribution to the gradient is influenced by the reference point. In three
dimensions (m = 3), the computation of the partial derivative gets more tedious.
The general principle is sketched in Fig. 2.
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S({y(1), . . . , y(μ)})

yref

y(μ)

Δy
(i)
1

Fig. 1. Partial Derivative of the S-metric for m = 2 and non-dominated sets. The
lengths of the line-segments of the attainment curve correspond to the values of the
partial derivatives of S . Only for extremal points do the values of the partial derivatives
depend on the reference point.

A
(i)
j = ∂S/∂y

(i)
j

−f3

f2

f1

dy
(2)
3
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(2)
3

yref

y(1)

y(2)

y(3)

Fig. 2. Partial derivative for m = 3. By changing a point y(i) differentially in the j-th
coordinate direction, the hypervolume grows with the area A

(i)
j of the ‘visible’ face of

the exclusively contributed hypervolume of that point in the direction of the movement.
Hence A

(i)
j is the partial derivative ∂S/∂y

(i)
j .
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y
(7)
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y
(4)

r

Fig. 3. The penalty function is defined as the sum of the euclidean distance (dashed
lines) of the dominated points (gray) to the attainment curve (solid line) shaped by
the non-dominated points (black) and bounded by the reference point r. The penalty
is subtracted from the S-metric value to give an influence to the dominated points.

(2) Sets with strictly dominated points. The gradient equals zero in case of
dominated points—provided that a slight perturbation does not make them
non-dominated—since no improvement of the S-metric can be observed for any
movement. Therefore, dominated points do not move during a search with gra-
dient methods but just remain in their position. To enable an improvement of
dominated points, a penalty value can be subtracted from the S-metric value,
that is negative if and only if points are dominated and otherwise zero. For
each dominated point, the minimal Euclidean distance to the attainment sur-
face shaped by the non-dominated points is calculated (Fig. 3). The sum of these
values is subtracted from the S-metric value of the whole set of points. This way,
the movement of dominated points influences the improvement of the penalized
S-metric and a local gradient of the dominated points is computed that points in
the direction of the nearest point on the attainment curve. In a gradient descent
method the movement of the non-dominated points is delayed by the dominated
ones. Anyway, this drawback is a smaller deficit than completely losing the dom-
inated points. Since any non-dominated point contributes to the S-metric value,
the primary aim is to make all points non-dominated.

(3) Sets with weakly dominated points. Points that are dominated but not strictly
dominated (we call them weakly dominated) lie on the attainment surface of the
non-dominated points. Slight movements can make the points either remain
weakly dominated, become strictly dominated or non-dominated. Thus, the gra-
dient at these points is not continuous. The left-sided derivative ∂−S

y
(i)
j

may be

positive, while the right-sided derivative ∂+S
y
(i)
j

is always zero. For m = 2 positive

one-sided derivatives can be determined as the length of the segment of the at-
tainment curve. Let y(iL) determine the neighbor of the weakly dominated point
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Fig. 4. Partial derivative for weakly dominated points in 2D. These points are domi-
nated but not strictly dominated.

y(i) on the upper left corner of the attainment curve, and y(iR) the neighbor on
the lower right corner (see Fig. 4). If the point y(i) lies on the segment y(iL) to
(y(iR)

1 , y
(iL)
2 )�, then ∂+S

∂y
(i)
1

= 0 and ∂−S
∂y

(i)
2

= y
(iR)
1 − y

(i)
1 (see also Fig. 4); else if

the point lies on the segment y(iR) to (y(iR)
1 , y

(iL)
2 )�, then ∂−S

∂y
(i)
1

= y
(iL)
2 − y

(i)
2

and ∂+S
∂y

(i)
2

= 0. The fact that S(p) is in general not continuously differentiable

at weakly dominated points makes it problematic to work with gradient-based
methods that make use of second order derivatives.

Weakly dominated points can also cause non-dominated points to have dis-
continuous local derivatives, which is comprehensible by arguments similar to
the ones above. Besides degenerate points in the search space can cause discon-
tinuous derivatives. These are, loosely defined, search points (or blocks) with the
same image.

2.3 Empirical Determination of the Gradient

In practice the computation of the gradient can be approximated for example by
using numerical differentiation. Since weakly non-dominated points of the popu-
lation are not continuously differentiable, we need to take one-sided derivatives
in both directions into account. For a small positive ε we compute them via:

∂S
∂pi
≈ S((p1, . . . , pi ± sε, . . . , pμd)�)± S((p1, . . . , pi, . . . , pμd)�)

ε
(11)

The algebraic signs we need to use depend on the gradients of the objective func-
tion. In case of continuously differentiable objective functions, it is numerically
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safer to compute the derivatives of the objective functions first, and then use the
chain rule to compute the derivatives of the S-metric taking special care of weakly
non-dominated points whenever they occur. Both the computation of Equation
11 and the computation of the gradients of all objective functions at all points
(that can be used to compute the gradient via the chain rule) requires μd eval-
uations of the objective function vectors.

3 Analytical Solution of S-Metric Maximization

We exemplarily verify the maximization of the S-metric with the gradient by an
analytical calculation for a problem with a linear Pareto front {(y1, y2) | y2 =
1 − y1 and y1 ∈ [0, 1]} and a fixed number of points. Using analytical arguments
and partial derivatives, the optimal positions of the points are calculated. Later
we will use this problem and its solution for testing the local convergence behavior
of the gradient-based method.

Due to the monotonicity of the S-metric the μ points of the approximation set
that maximizes S lie on the Pareto front. In order to consider the hypervolume
of the approximation set we fix (1, 1) as the reference point and we consider
μ + 2 points on this Pareto curve whose y1-coordinates we denote by ui, with
i = 0, . . . , n + 1. For any such collection of n + 2 points we always require
u0 = 0 and un+1 = 1. We want to maximize the hypervolume with respect
to (1, 1). This is equivalent to minimizing the sum of the area of the triangles
which are bounded by the Pareto curve and the sides of the rectangles shaping
the attainment curve. Let vi denote the length of the interval between ui and
ui+1, then

∑v+1
i=1 v2

i is twice the area we want to minimize under the constraints∑n+1
i=1 vi = 1 and ∀i : 0 ≤ vi. This area is minimal in case the n + 2 points are

uniformly distributed (with the understanding that two of the points are the end
points). It is easy and worthwhile to prove this fact geometrically, yet we revert
to an analytical verification as follows. Let g :=

∑n+1
i=1 v2

i . Incorporating the
constraint vn+1 = 1−∑n

i=1 vi yields g =
∑n

i=1 v2
i + (1−∑n

i=1 vi)2. Computing
the partial derivatives of g results in ∂g

∂vj
= 2vj−2(1−∑n

i=1 vi) where j = 1, . . . n.
Each of these partial derivatives has a value of zero at v1 = 1

n+1 , . . . , vn = 1
n+1

and at this point the minimum occurs. Translations back to the original problem
result in v1 = 1

n+1 , . . . , vn = 1
n+1 and vn+1 = 1

n+1 . Hence, the points maximizing
the S-metric are equidistant (with two occupying the end points).

Note that by approximating the Pareto front {(y1, y2) | yi ∈ R with 0 ≤ y1 ≤
1 and y2 = 1 − y2} with a set consisting of μ points plus two extremal points
(0, 1), (1, 0) the maximal S-metric is 1

2 · μ
μ+1 . Moreover this maximum value can

only be attained if the μ non-extremal points are equally spaced between the
two extremal points.

With the generalized Schaffer problem Emmerich and Deutz [17] proposed a
scalable-dimension problem that gives rise to the discussed linear Pareto front
{(y, 1 − y) | y ∈ [0, 1]} for α = 0.5: f1(x) = 1

dα (
∑d

i=1 x2
i )

α → min and
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f2(x) = 1
dα (

∑d
i=1(1 − xi)2)α → min for xi ∈ R+, where i = 1, ..., d. In the

following section, this problem and its solution set are consulted for a proof of
concept result for the numerical optimization routines.

4 Gradient-Based Pareto Optimization

Due to the known problems with second-order gradient methods, which re-
quire twice continuous differentiability, a first-order gradient method, namely
the steepest descent/ascent method with backtracking line search has been im-
plemented [18]. The pseudo-code of our implementation is provided in Algorithm
1. The line-search algorithm has been kept simple to maintain transparency of
the search process. It will however converge to a local maximizer relative to the
line search direction. Note, that the line search may move to the same point in
two subsequent iterations. In this case the evaluation of the objective function
vectors of the population can be omitted. The convergence speed and accuracy
of the line search can be controlled with the parameters τ and αmin, respec-
tively. We recommend a setting of τ = 0.1, while the setting of αmin depends
on the problem. Since the length of the gradient decreases when the algorithm
converges to the optimum of a differentiable function, αmin does not have to be
very low, because the length of the gradient influences the step-size as well.

Algorithm 1. Gradient-ascent S-metric maximization
1: input variables: initial population as μd vector p
2: control variables: accuracy of line search αmin, step reduction rate τ ∈ (0, 1)
3: α← 1 {Initialize step size α}
4: i← 0;pbest ← p0

5: d(0) ← ∇S(pbest) {Initialize search direction}
6: while |d(i)| > ε {Gradient larger than ε} do
7: α← 1
8: while α > αmin {Line search in gradient direction} do
9: pnew ← pbest + αd(i) {Try positive direction}

10: if S(Ψ(pbest)) ≥ S(Ψ(pnew)) then
11: pnew ← pbest − αd(i) {Try negative direction}
12: if S(Ψ(pbest)) ≥ S(Ψ(pnew)) {No success with both moves} then
13: α← α · τ {Reduce step size α}
14: pnew ← pbest {New current best point is old current best point}
15: end if
16: end if
17: pbest ← pnew

18: end while
19: d(i+1) ← ∇S(pnew), i← i + 1 {Compute new gradient direction}
20: end while
21: return pbest
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5 SMS-EMOA-Gradient Hybrid

The gradient-descent method requires a good starting point in order to converge
to the Pareto front. For this purpose an EMOA is applied which generates a good
approximation of the Pareto front. We propose the SMS-EMOA because it has
shown excellent results concerning the optimization of test functions and real-
world problems (cf. [10,19,20]). The SMS-EMOA uses a steady-state selection
scheme, i.e. in each generation one new solution is generated and one solution is
discarded. A population of μ individuals is optimized without additional archives
(which are often used in other EMOA). The S-metric is used within the selection
operator to determine the subset of μ individuals with the highest S-metric
value. Thereby, the individual with the least exclusive contribution of dominated
hypervolume is discarded. As mentioned in Section 1, the maximization of the
S-metric results in a well-distributed solution set with an emphasis of solutions
in regions with fair trade-offs. The SMS-EMOA’s final population functions as
the starting point of the gradient strategy which does only a fine-tuning of the
solutions. This sequential application of autonomous algorithms is called high-
level relay hybridization according to the taxonomy introduced by Talbi [11].
The total number of function evaluations is partitioned among the algorithms.

Experiment on the generalized Schaffer problem: We conducted two experi-
ments to analyze the limit behavior of the hybrid algorithm on the generalized
Schaffer problem (Section 3) which reads f1(x) = 1/dα(

∑d
i=1 x2

i )
α, f2(x) =

1/dα(
∑d

i=1(1− xi)2)α, x ∈ X = [0, 1]d, α ∈ R
+, and both objectives to be mini-

mized. The first 1000 evaluations are always performed by SMS-EMOA. Figures
5 and 6 show a clipping of the subsequent behavior of typical runs, at which
SMS-EMOA is always started using the same random seed.

In Fig. 5 the results pertaining to the generalized Schaffer problem with
d = 10, α = 1

2 (hence the Pareto front is linear, cf. Section 3) of the follow-
ing experiment are shown. The population size μ is 5, 10, or 15, and dimension d
is 10, 15, or 20. The purpose of this experiment was to study the convergence be-
havior of the gradient part of the algorithm. We see that the convergence (after
a reasonable starting population has been found by the SMS part) is linear or
almost linear. The former is especially true for small sizes of the approximation
sets. The dimension of the search space has less effect on the speed of the meth-
ods. This can be explained by the relatively long time needed to perform line
searches, as the dimension of the search space only influences the time needed
for the gradient computation.

Fig. 6 shows the results for the generalized Schaffer problem with α = 1, the
dimension of the search space d = 10, and a population size (i.e., the size of the
approximation set) of 10. The Pareto front is equal to {(y1, y2) | y2 = 1−2

√
y1 +

y1 and 0 ≤ y1 ≤ 1} and the maximally attainable S-metric is 1− 1
6 ≈ 0.833333.

The discontinuities in the progress correspond to the end of a line search, and
a gap indicates that function evaluations are spend on the gradient calculation.
The picture shows that once the gradient part of the hybrid method is supplied



Gradient-Based/Evolutionary Relay Hybrid 151

1e-06

1e-05

0.0001

0.001

0.01

0.1

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Lo
g(

S
M

A
X

-S
)

Number of objective vector evaluations

"cgrad5.dat"
"cgrad10.dat"
"cgrad15.dat"

Fig. 5. The limit behavior of the gradient method starting from a population evolved
over 1000 iterations with the SMS-EMOA for different problem dimensions d and pop-
ulation sizes μ. The logarithmic distance to the known optimum of the S-metric is
plotted for different strategies.
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second of the gradient part.

with a reasonably good approximation set to the Pareto front the gradient part
of the method outperforms the pure SMS-EMOA.

Studies on the ZDT Test Suite: Fig. 7 refers to the experiments run on the problem
ZDT6 of the ZDT benchmark [5]. The size of the approximation set was chosen
to be 20. Runs without penalty (Fig. 7, top) and with penalty (Fig. 7, bottom) on
dominated points have been conducted. The total number of function evaluations
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Fig. 7. Convergence of the hybrid algorithm for different switching points at which
the gradient based solver takes over on the 10-D ZDT6 problem. In the upper (lower)
figure the strategy is without (with) penalty. The numbers in the legend determine the
number of function evaluation before and after switching. All strategies computed a
total of 2000 evaluations and used a population size of 20.

in each run was 2000. Five different strategies were performed, listed with increas-
ing number of function evaluations dedicated to the SMS part: 20, 200, 400, 1000,
and 2000, respectively. The remainder of the 2000 function evaluations was used
for the gradient part.

The two pictures reveal that it pays off to apply the gradient part of the
algorithm as soon as a rough approximation set has been found. The
speed-up occurs especially at the beginning and thus the hybrid approach is
useful in case you would like to get very good results with few function evalu-
ations. Secondly the picture also shows that giving a penalty to points in the
population which are dominated gives far better approximation sets w.r.t. the
S-metric.
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Table 1. Runs with the relay hybrid obtained on the ZDT test suite. For each variant
five runs have been performed. For ZDT4 the pure gradient approach failed to find a
point dominating the reference point, thus the S-metric value remained zero.
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The finding of a reasonable approximation set to be used as a starting point
for the gradient method is always done by the SMS. In the nearly pure gradient
method also a very tiny fraction of the total number of functions evaluations is
used by SMS-EMOA (20 evaluations). Clearly, the hybrid algorithm converges in
each case to a population with maximum S-metric. Also the pure SMS method
eventually catches up with the hybrid algorithm and converges to the maximum.

Table 1 shows the results of running the hybrid algorithm on the ZDT test
suite (ZDT1 - ZDT4, and ZDT6). On each of the five problems the five different
distributions of 2000 function evaluations among the hybrid parts are applied: (1)
SMS: 20, gradient: 1980, (2) SMS: 500, gradient: 1500, (3) SMS: 1000 gradient:
1000, (4) SMS: 1500, gradient: 500, (5) SMS: 2000, gradient: 0. Each version
of the hybrid algorithm is repeated five times with different random seeds. The
reference point for each of the first four ZDTs was chosen as (5, 5) and for ZDT6
it was (10, 10). There are three checkpoints (at 1000, 1500, and 2000 evaluations)
at which the minimal, average, and maximal S-metric are recorded (calculated
concerning the five repetitions of a strategy). All strategies used the penalty
function for dominated points. For ZDT1 and ZDT2 it is clear that the hybrid
method is outperforming the pure SMS algorithm. In case of ZDT3 the pure
gradient method is somewhat worse than the pure SMS on the other hand in
case the first half of the function evaluations is spent on SMS (line 3 of ZDT3)
the hybrid method outperforms the pure SMS again. A similar remark can be
made about ZDT4 except that the pure gradient method in this case does not
give good results due to reference point sensitivity. The reference point has been
chosen too close to the Pareto front so that no point dominates it after a small
number of function evaluations and the gradient strategy cannot work. The
reference point sensitivity is not present in the SMS part of the algorithm as
it only looks for relative increments of the hypervolume and (if d = 2) always
selects extremal points directly. We see that when 500 or more evaluations are
first spent on the SMS the hybrid is again competitive with the pure SMS. In
case of ZDT6 which is multimodal the hybrid strategies do worse than the pure
SMS. In all cases we see that the gradient method gives a speed-up especially in
the beginning of the optimization.

6 Conclusions and Outlook

This paper introduces the gradient computation of the S-metric with respect to
a population of points. Using the chain rule, the gradient of the S-metric can
be computed from the gradients of the objective functions. It is important to
distinguish between strictly dominated, weakly dominated, and non-dominated
points. While for non-dominated sets differentiability is inherited from the objec-
tive functions, in the presence of weakly dominated points one-sided derivatives
occur. For strictly dominated points sub-gradients with value zero occur. They
make it impossible to improve these points by means of gradient methods. This
problem can be partly circumvented by introducing a penalty approach.

However, the experiments in this paper show that it is advantageous to start
the search with non-dominated sets close to the Pareto front, computed by
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an evolutionary algorithm, preferably one which maximizes the S-metric, too.
Therefore, the proposed relay hybrid between the SMS-EMOA and a gradient
method seems promising, though refined rules for phase switching still needs
to be worked out. The study on the generalized Schaffer problem shows the
potential of the new approach to find high precision approximations of finite
populations maximizing the S-metric.

Future research should extend the empirical work on benchmarks and study
problems of higher objective space dimension. Though some basic ideas of the
gradient computation for more than two objectives using the chain rule have
been sketched, details of the implementation need to be worked out.
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malen Kompromißlösungen bei statistischen polykriteriellen Optimierungsauf-
gaben. Journal TH Ilmenau 6, 139–148 (1980)

13. Fliege, J., Svaiter, B.F.: Steepest descent methods for multicriteria optimization.
Mathematical Methods of Operations Research 51(3), 479–494 (2000)

14. Shukla, P., Deb, K., Tiwari, S.: Comparing Classical Generating Methods with
an Evolutionary Multi-objective Optimization Method. In: Coello Coello, C.A.,
Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 311–
325. Springer, Heidelberg (2005)

15. Schütze, O., Dell’Aere, A., Dellnitz, M.: On continuation methods for the numer-
ical treatment of multi-objective optimization problems. In: Branke, J., Deb, K.,
Miettinen, K., Steuer, R. (eds.) Practical Approaches to Multi-Objective Optimiza-
tion. Dagstuhl Seminar Proceedings, IBFI, Schloss Dagstuhl, Germany, vol. 04461
(2005)

16. Bosman, P.A., de Jong, E.D.: Combining gradient techniques for numerical multi-
objective evolutionary optimization. In: Keijzer, M., et al. (eds.) GECCO06, vol. 1,
pp. 627–634. ACM Press, Seattle, USA (2006)

17. Emmerich, M., Deutz, A.: Test Problems based on Lamé Superspheres. In:
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Abstract. The connected facility location (ConFL) problem generalizes
the facility location problem and the Steiner tree problem in graphs.
Given a graph G = (V, E), a set of customers D ⊆ V , a set of potential
facility locations F ⊆ V (including a root r), and a set of Steiner nodes
in the graph G = (V, E), a solution (F, T ) of ConFL represents a set of
open facilities F ⊆ F , such that each customer is assigned to an open
facility and the open facilities are connected to the root via a Steiner Tree
T . The total cost of the solution (F, T ) is the sum of the cost for opening
the facilities, the cost of assigning customers to the open facilities and
the cost of the Steiner tree that interconnects the facilities.

We show how to combine a variable neighborhood search method with
a reactive tabu-search, in order to find sub-optimal solutions for large
scale instances. We also propose a branch-and-cut approach for solving
the ConFL to provable optimality. In our computational study, we test
the quality of the proposed hybrid strategy by comparing its values to
lower and upper bounds obtained within a branch-and-cut framework.

1 The Connected Facility Location Problem

Due to increasing customer demands regarding broadband connections, telecom-
munication companies search for solutions that “push” rapid and high-capacity
fiber-optic networks closer to the subscribers, thus replacing the outdated cop-
per twisted cable connections. The Connected Facility Location Problem (ConFL)
models the next-generation of telecommunication networks: In the so-called tree-
star networks, the core (fiber-optic) network represents a tree. This tree inter-
connects multiplexers that switch between fiber optic and copper connections.
Each selected multiplexer is the center of the star-network of copper connections
to its customers.

ConFL represents a generalization of two prominent combinatorial optimiza-
tion problems: the facility location problem and the Steiner tree problem in
graphs. More formally, ConFL is defined as follows: We are given an undirected
graph G = (V, E) with a set of facilities F ⊆ V and a set of customer nodes
D ⊆ V . We assign opening costs fi ≥ 0 to each facility i ∈ F , edge costs ce ≥ 0
� Supported by the Hertha-Firnberg Fellowship of the Austrian Science Foundation
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to each edge e ∈ E, and demands dj to each customer j ∈ D. We also assume
that there is the set of Steiner nodes S = V \ (F ∪ D) and a root node r ∈ F .
Costs of assigning a customer j ∈ D to a facility i ∈ F are given as aij ≥ 0.
A solution (F, T ) of ConFL represents a set of open facilities F ⊆ F , such that
each customer j ∈ D is assigned to an open facility i(j) ∈ F and the open fa-
cilities are connected to the root r ∈ F by a Steiner Tree T . The total cost of
the solution (F, T ) is the sum of the cost for opening the facilities, the cost of
assigning customers to the open facilities and the cost of the Steiner tree that
interconnects the facilities:

∑

i∈F

fi +
∑

j∈D
djai(j)j +

∑

e∈T

ce.

In this constellation, some facility nodes may be used as pure Steiner nodes, in
which case no opening costs for them will be paid.

As mentioned in [17], we can assume without loss of generality that the root
r represents an open facility and hence belongs to the Steiner tree. To solve
the unrooted version of the problem, we simply need to run the algorithm for all
facility nodes chosen as the root r. Without loss of generality, we can also assume
that customer demands are all equal to one. Otherwise, we can set aij ← djaij

for all pairs (i, j).
In Section 2, we propose a hybrid approach that combines Variable Neigh-

borhood Search (VNS) with a reactive tabu search method. Section 3 describes
a branch-and-cut (B&C) approach to solve the problem to provable optimality.
In the last Section, our computational results show the comparison of the pro-
posed hybrid approach with lower and upper bounds obtained within the B&C
framework.

1.1 Related Work

ConFL has been introduced by Karger and Minkoff [6] who gave the first ap-
proximation algorithm of a constant factor. For the metric ConFL in which ce

is a metric and aij = 1/Mcij, for some constant M > 1, Swamy and Kumar [17]
used an integer linear programming (ILP) formulation to develop a primal-dual
approximation algorithm of factor 8.55.

The rent-or-buy problem is a special case of ConFL in which there are no
opening costs of the facilities and F = V . A randomized 3.55-approximation
algorithm for the metric rent-or-buy problem has been proposed by Gupta et
al. [3]. The rent-or-buy problem has also been studied by Nuggehalli et al. [16]
who gave a distributed greedy algorithm with approximation ratio 6, in the
context of the design of ad hoc wireless networks. Their algorithm solves the
rent-or-buy problem to optimality if the underlying graph has a tree topology.

The Steiner tree-star problem is another problem related to ConFL and to the
node-weighted Steiner tree problem in graphs. The main difference to ConFL lies
in the cost structure. To each non-customer node, we assign costs fi, i ∈ V \ D,
assuming therefore that F = V \ D. If node i belongs to the Steiner tree T , we
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pay for it no matter if any customer is assigned to it or not. Thus, the objective
of the Steiner tree-star problem looks as follows:

min
∑

i∈T

fi +
∑

j∈D
ci(j)j +

∑

e∈T

ce,

where c is the cost-function used both for assignments and for edge-costs.
Khuller and Zhu [7] gave a 5-approximation algorithm for solving the metric

version of the problem. Lee et al. [11] proposed a branch-and-cut algorithm based
on a separation of anti-cycle constraints. Their algorithm solved instances with
up to 200 nodes to provable optimality. Xu et al. [18] developed a tabu search
heuristic that incorporates long-term memory and probabilistic move selections.
The authors considered insert-, delete-, and swap-moves, whereas swap-moves
are used for diversification purposes. Computational results are given for in-
stances of Lee et al. [11] and for additional sets of instances with up to 900
nodes. For the largest instances, the running time of the algorithm of more than
10 hours was reported.

Note that without the connectivity requirement (connecting the facilities by
a Steiner tree), the ConFL reduces to the uncapacitated facility location problem
(UFLP). On the other hand, if the set of facilities to be opened is known in
advance, the problem is reduced to the Steiner tree problem in graphs (STP).
Therefore, clearly, the problem is NP-hard.

2 A VNS with a Tabu Search

2.1 Basic VNS Model

According to Hoefer’s computational study [5] on the uncapacitated facility loca-
tion problem (UFLP), one of the successful metaheuristic approaches for solving
the UFLP is a tabu-search approach given by Michel and van Hentenryck [15].
Recently, the authors obtained a very efficient strategy by simply extending a
tabu-search approach with a variable neighborhood search. Our VNS framework
follows these basic ideas given in [4]. Note however that, due to the nature of
the problem, the way we calculate the objective value significantly differs from
the one used to evaluate UFLP (see Section 2.2). Algorithm 1 shows our generic
approach.

Representation: Assuming that for a fixed set of facilities, we can determinis-
tically find a (sub)-optimal solution, we conduct our local search in the space
of facility locations, thus changing configurations of vectors y = (y1, . . . , y|F|),
where yi = 1 if facility i is open.

When it is clear from context, we will use y to denote the subset of open
facilities (i.e. those with yi = 1).

k-Neighborhood: We define a k-neighborhood Nk of a solution ŷ by all solutions
y such that the Hamming distance d(ŷ, y) between these two binary vectors is
equal to k:

Nk(ŷ) = {y ∈ {0, 1}|F| | d(ŷ, y) = k}.
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best = ŷ = Initialize()
nIter = 0

nSame < LimitSame Time < TimeLimit
y′ = TabuSearch(N1(ŷ))
nIter + +

Obj (y′) > Obj (ŷ)
nSame + +
ŷ = Shake(y′)

ŷ = y′

Obj (y′) < Obj (best)
nSame = 0

tabuLength
best = y′

nSame + +
tabuLength

best

Algorithm 1. VNS algorithm

Reactive Tabu Search: The status of a facility i ∈ F is given by yi. A basic move is
the change of the status of a facility, i.e. yi ← 1− yi. The tabu list consists of the
set of facilities that cannot be flipped. A solution ŷ is locally improved using the
best improvement strategy with respect to its 1-neighborhood. Thus, all possible
flips of single positions that are not in the tabu list are considered, and the best
one is taken. If there is more than one best flip, we randomly select one.

In order to forbid the reversal of recent search steps, we use a self-learning
mechanism that adapts the length of the tabu list during the search. We simplify
the ideas of the reactive tabu search, which was originally proposed by Battiti
and Tecchiolli [1]: the list size is increased whenever no improvement upon the
best found solution is made. Whenever a new best solution is detected, the list
size is decreased.

We implement a dynamic tabu list in the following way: to each facility i ∈ F ,
we associate a counter tabuList(i). When a facility is inserted into the tabu list,
we set tabuList(i)← nIter + tabuLength, which forbids flipping the facility i for
the next tabuLength iterations, whereby nIter denotes the current iteration. The
value of tabuLength is adjusted automatically: if tabu search improves the value
of ŷ, but it is still worse than the best obtained value, we increase the length of
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the tabu list by one. Otherwise, the length of the tabu list will be decreased by
one. We use standard settings for minimal and maximal values of tabuLength,
and set them to 2 and 10, respectively.

Shaking the Neighborhood: This diversification mechanism enables escaping from
local optima found within the tabu search procedure. If the last tabu search
iteration did not improve upon the last selected value ŷ, we randomly select k
(k ≥ 2) positions and flip them. The value k increases until it reaches a pre-
specified maximum neighborhood size (50 in the default implementation), after
which it starts from 2 again.

Using this technique, the diversification degree will be automatically adjusted.
Increasing the size of neighborhoods systematically also assures that significant
diversifications are avoided during early phases of the search.

Hash-Tables: Since the evaluation of solutions is computationally expensive (see
next Subsection), we maintain hash-tables for all vectors y for which the objective
value for STP, assignment or total ConFL value is already known (see also [10],
where a similar idea has been used). This strategy ensures that the objective
value of the same vector will not be calculated more than once within the whole
procedure, even if we return back to the same solution.

Termination Criteria: The algorithm terminates if the best found solution was
not improved within the last LimitSame iterations, or a pre-specified TimeLimit
is exceeded. In our default implementation, we set LimitSame to 50, and
TimeLimit to 1000 seconds.

2.2 Evaluation of the Objective Function

Algorithm 2 shows the main steps of calculating the objective function for a
specified vector ŷ. We use the following notation:

– vectors x ( = xP or xA) refer to the assignment values, i.e. xij = 1 if customer
j is assigned to facility i and xij = 0, otherwise;

– T P and TMST denote the sets of nodes and edges building a Steiner tree
that connects the chosen set of facilities (yP and yMST , resp.).

Given ŷ, we first check if this configuration has been already calculated before.
If so, we get the corresponding tree-, assignment-, and facility values from the
hash-table Hash. Otherwise, we run a three-step procedure:

Step 1: (TMST , yMST ) = MSTHeuristic(ŷ): We consider the graph G′ =
(V ′, E′) – a subgraph of G induced by the set of facilities and Steiner
nodes V ′ = F ∪ S with the edge costs c. For G′, we generate the so-
called distance network1 - a complete graph whose nodes correspond

1 Calculation of the distance network is done only once in the beginning of the VNS
algorithm.
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ŷ i ŷi = 1

yP

Hash(ŷ)
(xP , T P , yP ) = Hash(ŷ)

(TMST , yMST ) = MSTHeuristic(ŷ)
(xA, yA) = Assign(yMST )
(xP , T P , yP ) = Peeling(TMST , xA, yA)

(xP , T P , yP ) Hash

P
e∈TP

ce +
P

i∈F fiy
P
i +

P
i∈F

P
j∈D aijx

P
ij

Algorithm2. Calculating the objective function

to facilities i ∈ F , and whose edge-lengths l(i, j) are defined as short-
est paths in G′, for all i, j ∈ F .

We use the minimum spanning tree (MST) heuristic [14] to find
a spanning tree TMST that connects all selected facilities (ŷi = 1).
1. Let G′′ be the subgraph of G′ induced by ŷ.
2. Calculate the minimum spanning tree MST ′′

G of the distance
sub-network G′′.

3. Include in TMST all intermediate edges and nodes of G contained
in selected shortest-path edges from MST ′′

G.
4. Update the set of selected facilities: set yMST

i = 1 for all nodes
i ∈ TMST ∩ F .

Step 2: (xA, yA) = Assign(yMST ): For each customer j ∈ D, we find the
cheapest possible assignment to a facility from yMST . The values are
stored in vector xA. Since not every facility from yMST necessarily
serves a customer, we denote with yA the subset of those that really
need to be opened.

This operation is calculated from scratch – although the differ-
ences between two neighboring vectors ŷ1 and ŷ2 are in general very
small, the corresponding yMST

1 and yMST
2 solutions may be signifi-

cantly different. Thus, the total computational complexity for finding
the cheapest assignment in the worst case is O(|F||D|).

Step 3: (xP , T P , yP ) = Peeling(TMST , xA, yA): We finally want to get rid
of some of those facilities that are still part of the Steiner tree, but
that are not used at all. We do this by applying the so-called peel-
ing procedure. Our peeling heuristic tries to recursively remove all
redundant leaf nodes (including corresponding tree-paths) from the
tree-solution TMST . Let k denote a leaf node, and let Pk be a path
that connects k to the next open facility from yA, or to the next
branch, towards the root r.
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1. If the leaf node is not an (open) facility, i.e. if k �∈ yA, we simply
delete Pk.

2. Otherwise, we try to to re-assign customers (originally assigned
to k) to already open facilities (if possible). If such obtained
solution is better, we delete Pk and continue processing other
leaves.

The main steps of this procedure are given in Algorithm 3.
If the set of facilities is sorted for each customer in increasing

order with respect to its assignment costs2, this procedure can be
implemented very efficiently. Indeed, in order to find an open facil-
ity (from yP ) nearest to j and different from k (denoted by ik(j)),
we only need to proceed this ordered list starting from k until we
encounter a facility from yP .

The algorithm stops when only one node is left, or when all the
leaves from T P have been proceeded. Thus, the worst-case running
time of the whole peeling method is O(|F||D|).

yA xA TMST

yP

T P = TMST yP = yMST xP = xA

k T P

Pk c(Pk) =
P

e∈Pk
ce

k �∈ yP

T P = T P − Pk

Dk = {j | j ∈ D, xP
kj = 1}

ik(j) = arg min{aij | i ∈ yP , i �= k} ∀j ∈ DkP
j∈Dk

aik(j)j < fk + c(Pk) +
P

j∈Dk
akj

yP
k = 0

T P = T P − Pk

xP
kj = 0 xP

i(k)j
= 1 ∀j ∈ Dk

Algorithm 3. Peeling procedure

3 Branch-and-Cut for ConFL

We propose to calculate lower bounds and provably optimal solutions to ConFL
using the integer linear programming (ILP) model given below. For solving the
2 Sorting of these lists is done once, in the initialization phase of VNS algorithm.
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linear programming relaxations and for a generic implementation of the branch-
and-cut approach, we used the commercial packages ILOG CPLEX (version 10.0)
and ILOG Concert Technology (version 2.2).

We solve the ConFL to optimality on a directed graph GA = (V, A) obtained
from the original one G = (V, E) by simply replacing each edge e ∈ E by two
directed arcs of the same cost:

A = {(k, l)|{k, l} ∈ E ∧ l �= r}
ckl = c({k, l}), ∀(k, l) ∈ A

The assignment costs (aij) remain unchanged.
The problem of finding a rooted Steiner tree on a directed graph is known as

the Steiner arborescence problem: given GA, a root r and the set of terminals
F ⊂ V , find a subset of arcs R ⊂ A such that there is a directed path from r to
each i ∈ F , and that

∑
(k,l)∈R ckl is minimized.

To model the problem, we use the following binary vectors: yi indicates
whether a facility i is open, xij indicates whether customer j is assigned to
facility i and zkl indicates whether the arc (k, l) is a part of the directed Steiner
tree rooted at r.

(ConFL) min
∑

i∈F
fiyi +

∑

i∈F

∑

j∈D
aijxij +

∑

(k,l)∈A

cklzkl (1)

∑
i∈F xij ≥ 1, ∀j ∈ D (2)
xij ≤ yi, ∀i ∈ F ∀j ∈ D (3)

∑
(k,l)∈δ−(S) zkl ≥ yi, ∀S ⊆ V \ {r}, i ∈ S ∩ F �= ∅ (4)

yr = 1 (5)
0 ≤ xij , zkl, yi ≤ 1 ∀i, ∀j, ∀(k, l) ∈ A (6)
xij , zkl, yi ∈ {0, 1} ∀i, ∀j, ∀(k, l) ∈ A (7)

Here, with δ−(S) we denote the set of ingoing edges of S, i.e., δ−(S) = {(k, l) ∈
A | k �∈ S, l ∈ S}.

The assignment constraints (2) ensure that each customer is assigned to ex-
actly one facility. The capacity constraints (3) ensure that customers can only be
assigned to open facilities. The connectivity constraints (4) guarantee that there
is a directed path between every open facility and the root r, i.e. they ensure
that open facilities are connected to the root and to each other. With constraint
(5) we fix the root node r. Constraints (4) and (5) ensure existence of the Steiner
arborescence, whereas constraints (2) and (3) ensure a feasible assignment.

Initialization: We initialize the LP with relaxed integer requirements (6), with
assignment- and capacity-inequalities (2)-(3), with indegree inequalities:

∑

(k,l)∈A

zkl = yl, ∀l ∈ F



A Hybrid VNS for Connected Facility Location 165

and with the subtour elimination constraints of size two:

zkl + zlk ≤ yl, ∀l ∈ F .

Additionally, we add flow-balance constraints ([8]) that ensure that the in-degree
of each Steiner node is less or equal than its out-degree:

∑

(k,l)∈A

zkl ≤
∑

(l,k)∈A

zlk, ∀l �∈ F .

Separation of Cut Inequalities: In each node of the branch-and-bound tree we
separate the cut-inequalities given by (4). For a given LP-solution ẑ, we construct
a support graph Gẑ = (V, A, z) with arc-weights ẑ : A �→ [0, 1]. Then we calculate
the minimum cost flow from the root r to each potential facility node i ∈ F
such that yi > 0. If this min-cost flow value is less than yi, we have a violated
inequality, induced by the corresponding min-cut in the graph Gẑ, and we insert
it into the LP.

To improve computational efficiency, we search for nested, back and minimum-
cardinality cuts and insert at most 100 violated inequalities in each separation
phase. For more details, see our implementation of the B&C algorithm for the
prize-collecting Steiner tree problem, where the same separation procedure has
been used [12,13].

Branching: Branching on single arc variables produces a huge disbalance in the
branch-and-bound tree. Whereas discarding an edge from the solution (setting
zkl to zero) doesn’t bring much, setting the node variable to one, significantly
reduces the size of the search subspace. Therefore we set the highest branching
priority to potential facility nodes i ∈ F .

4 Computational Results

We consider three classes of benchmark instances, obtained by merging data
from three public sources. In general, we combine an UFLP instance with an
STP instance, to generate ConFL input graphs in the following way: first |F|
nodes of the STP instance are selected as potential facility locations, and the
node with index 1 is selected as the root. The number of facilities, the number of
customers, opening costs and assignment costs are provided in UFLP files. STP
files provide edge-costs and additional Steiner nodes.

– We consider two sets of non-trivial UFLP instances from UflLib3:
• MP-{1,2} and MQ-{1,2} instances have been proposed by Kratica et

al. [10]. They are designed to be similar to UFLP real-world problems
and have a large number of near-optimal solutions. There are 6 classes of
problems, and for each problem |F| = |D|. We took 2 representatives of
the 2 classes MP and MQ of sizes 200× 200 and 300× 300, respectively.

3 http://www.mpi-inf.mpg.de/departments/d1/projects/benchmarks/UflLib/

http://www.mpi-inf.mpg.de/departments/d1/projects/benchmarks/UflLib/
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• The GS-{250,500}-{1,2} benchmark instances were initially proposed by
Koerkel [9] (see also Ghosh [2]). Here we chose two representatives of
the 250 × 250 and 500 × 500 classes, respectively. Connection costs are
drawn uniformly at random from [1000, 2000], while opening costs are
drawn uniformly at random from [100, 200].

– STP instances:
• Instances {C,D}5, {C,D}10, {C,D}15, {C,D}20 were chosen randomly

from the OR-library4 as representatives of medium size instances for the
STP.

All experiments were performed on a Pentium D, 3.0 GHz machine with 2GB
RAM. The first table shows the number of facility nodes (|F|), the number of
customers (|D|), and the number of Steiner nodes (|S|); because sets are disjoint,
S = V \ (D ∪ F). Furthermore, lower bounds (LB) and upper bounds (UB)
obtained after running the B&C algorithm for one hour are provided.

The number of nodes in the branch-and-bound tree and the running time of
the exact method indicate that the instances with no more than 300 customer-
and facility nodes are not trivial, but also not too difficult for the selected
method.

For 15 out of 48 benchmark instances – 6 from the first and 9 from the second
group – our B&C algorithm finds an optimal solution in less than one hour.
Note that for the rest of the instances, we provide upper bounds found by local
improvement methods already incorporated in the CPLEX solver 10.0, without
using any additional primal heuristics.

The second table shows average and best values (out of 10 runs) obtained
from running the VNS strategy with time limit of 1000 seconds. Initial solutions
are obtained by randomly selecting 5% of potential facilities.

We provide the best found value of the VNS approach, as well as the best- and
average-gaps out of 10 runs (gapbest and gapavg , resp.). Standard deviation of
the gap is given in column gapstddev . The average number of iterations, and the
average running time (in seconds) needed to detect the best solution of each run
are given in the last two columns. Note that the gap values are always calculated
with respect to the lower bound given in the first column.

The obtained results clearly indicate that the B&C algorithm is not able to
handle instances with a large number of customer- or facility nodes within a rea-
sonable amount of time. Already for instances with F = D = 500, the algorithm
is not able to close the optimality gap. The main difficulty for B&C (and exact
methods in general) comes from the assignment and capacity constraints. On
the other side, for the same set of instances, our VNS approach finds solutions
which are within 1% of the lower bound.

For the instances of the first two groups, the algorithm does not always reach
the optimal solution, but the average gaps and their standard deviation indicate
a stable performance and the robustness of the approach.

The incorporation of the VNS method as a primal heuristic within the B&C
framework seems a promising direction for further research. The synergy effect
4 http://people.brunel.ac.uk/~mastjjb/jeb/orlib/steininfo.html

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/steininfo.html
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Table 1. Lower and upper bounds of selected benchmark instances obtained by running
B&C algorithm with time limit of one hour

|D| |F| |S ∪ F| |E| |S|
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Table 2. Comparison of the VNS with lower and upper bounds obtained by B&C

gapbest gapavg gapstddev
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of this combination may bring advantages to both approaches: good starting
solutions obtained by rounding fractional solutions for the VNS, on one side,
and fast high-quality upper bounds for B&C, on the other side.
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Abstract. For the NP-hard Optimum Communication Spanning Tree
(OCST) problem a cost minimizing spanning tree has to be found, where
the cost depends on the communication volume between each pair of
nodes routed over the tree. We present a memetic algorithm (MA) for
this problem and focus our discussion on the evaluation of recombination
operators for the OCST. The proposed algorithm outperforms evolution-
ary algorithms (EA) for known benchmark instances and outperforms
state-of-the-art solvers for non-Euclidean instances.

1 Introduction

The Optimum Communication Spanning Tree problem (OCST, a. k. a. minimum
communication (cost) spanning tree, MCST) [1] is NP-hard (ND7 in [2]). Given
a graph G = (V, E, d, r) with a distance function d : E → R

+ and a requirement
function r : V × V → R

+, a spanning tree T ⊆ G is wanted minimizing the cost

c(T ) =
∑

i,j∈V

r(i, j) · c(pT
i,j) (1)

where c(pT
i,j) is the length of path pT

i,j from i to j in T . In the common case, both
d and r are symmetric and d does not need to satisfy the triangle inequality.

Our approach is the first memetic algorithm applied to the OCST. It finds so-
lutions for benchmark instances magnitudes faster than pure evolutionary algo-
rithms and operates on instances larger than considered by any other approach.
In the remainder of this section related work is discussed. In Section 2 we present
the structure of our memetic algorithm. In Section 3 our experimental setup is
described. Section 4 discusses the results of the experiments and Section 5 sum-
marizes our findings and suggests directions for future work.

1.1 Related Work

Hu [1] defined the OCST, but confined the discussion to two special cases: The
optimum requirement spanning tree (d ≡ 1), which can be solved by an O(n4)
construction algorithm using the Ford-Fulkerson labeling procedure, and the op-
timum distance spanning tree (r ≡ 1, a. k. a. minimum routing cost

T. Bartz-Beielstein et al. (Eds.): HM 2007, LNCS 4771, pp. 170–184, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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spanning tree, MRCT). For the latter problem additional requirements were
determined which ensure that the optimal solution has a star topology. Other
special cases [3] of the OCST are the product-requirement communication span-
ning tree (PROCT, r(i, j) = r(i) · r(j)) and the sum-requirement communica-
tion spanning tree (SROCT, r(i, j) = r(i) + r(j)). Approximation algorithms
are presented for PROCT (O(n5) time, 1.577-approximation), SROCT (O(n3)
time, 2-approximation), and MRCT (O(n3), 1.577-approximation).

Ahuja and Murty [4] define both an exact and an heuristic algorithm for the
OCST. For the exact branch& bound algorithm, the lower bound is computed
in O(n4) time and the upper bound is the solution found by the heuristic algo-
rithm. The exact algorithm maintains three sets of edges I (edges included in
the spanning tree), E (edges excluded from the tree), and U (undecided edges).
Initially, U contains all candidate edges and in each branching step, one edge
is removed from U and added to either I or E. Details on the heuristic tree
construction and improvement algorithms are shown in sections 2.3 and 2.4.

In [5], Palmer andKershenbaumpresent a heuristic algorithmwhich exploits the
feature that good solutions for the OCST often have a star topology. Solutions are
either constructed by building a star (evaluating all n stars costs O(n2)) or combi-
nations of multiple stars, which have 2 ≤ k � n interior tree nodes (evaluating all(
n
k

)
stars costs O(nk+1)). If the star approach is not successful, solutions are cre-

ated by building minimum spanning trees (MST). A centering node is selected in
the tree and the edges get directed towards this network center. The improvement
algorithmiterativelyevaluates1-exchangestepsbydetachingasubtree fromitspar-
ent and reattaching it to a node between the former parent’s parent node and the
network center. As an alternative to their heuristic approach,Palmer and Kershen-
baum discuss a genetic algorithm [5,6] focusing on the representation of the tree in
the GA. Their GA’s chromosome contains a vector of bias values for both nodes and
edges (link and node biased, LNB) modifying the edge cost function. The tree rep-
resentedby the chromosomes is constructedbybuilding anMSTusing themodified
cost function. The GA performs better than the same authors’ heuristic from [5].

The most recent EA for the OCST is from Soak [7]. A new encoding is in-
troduced, which uses a sequence of 2(n − 1) node ids to represent a spanning
tree, where two consecutive nodes form an edge that is included in the tree un-
der construction. Once a cycle is introduced, the longest edge is removed from
the cycle and the construction of the tree continues. For recombination, starting
from a random node those edges occurring in one of the parents are added to the
node sequence. The algorithm finds a new best solution for a 35 node instance
from Berry and the known optimum for instance a 100 node instance from Raidl,
requiring more than 1 CPU hour for the latter results. For comparison with our
findings it should be noted that these results were found with a machine not
more than two times slower than our experimental environment.

2 Memetic Algorithms

Evolutionary Algorithms (EA) [8] are nature-inspired algorithms that try to
improve an initial population of solutions by iteratively (in terms of generations)
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applying a set of operators to the population. Those operators are recombination,
mutation and selection. Local Search (LS) [9] is a neighborhood search based
algorithm. Two solutions are neighbors if one solution can be transformed to the
other solution by an elementary modification operation. The effectiveness of an
LS depends on the definition of the neighborhood and how the walk through the
solution space is performed. Memetic Algorithms (MA, Fig. 1) [10] combine both
evolutionary algorithms and local search. Using local search inside evolutionary
algorithms allows to direct the search process towards better solutions.

1 procedure MemeticAlgorithm
2 P ← initialPopulation � Use some construction heuristic
3 while ¬Terminate do � Termination based on time, convergence, . . .
4 P ′ ← Recombination(P ) � Create offspring from two or more parents
5 P ′′ ← Mutation(P ′) � Perturb offspring solutions
6 P ′′′ ← LocalSearch(P ′′) � Optimize offspring solutions
7 P ← Selection(P ′′′, P ) � Select individuals for next generation
8 end while
9 return P

10 end procedure

Fig. 1. Structure of a Memetic Algorithm

Our implementation does not employ a mutation algorithm, as both the local
search and the recombination operators may increase diversity. The other com-
ponents of the memetic algorithm are explained in the remainder of this section
and in the presentation of the experimental setup in Sec. 3.

2.1 Definitions

A path pT
a,b from a to b in T is a list of nodes (v1, . . . , vk) with v1 = a, vk = b,

and (vi, vi+1) ∈ ET for i = {1, . . . , k − 1}. The length of a path is defined as
c(pT

a,b) =
∑k−1

i=1 d(vi, vi+1). A partial solution T ′ ⊂ T is a non-connected graph,
the cost c(T ′) is defined as follows:

c(T ′) =
∑

i,j∈V

r(i, j) · c′(pT ′
i,j) c′(pT ′

i,j) =

{
c(pT ′

i,j) if pT ′
i,j exists

0 otherwise
(2)

In the remainder of this paper the following holds: n = |V | and m = |E|.

2.2 Common Subroutine

Several algorithms in this paper use a common subroutine Alpha to estimate
the change in cost when performing an 1-exchange move on a tree (edge e ∈ ET

is removed from T cutting the tree into two components S and S) or inserting
a new edge in the tree during a construction step (S holds the partial solution’s
nodes, S represents all nodes not yet connected to the partial solution). The
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paths between any pair of nodes within a component have to be passed to Alpha

as parameters pS and pS along with S and S.
The sum of demands from a node i to all nodes in the other component

is denoted by wi. The sum of demands between both components is
∑

i∈S wi.
A component’s external traffic’s cost corresponds to hi, if all traffic from i’s
component to the other component must be routed via i.

wi =

{∑
j∈S ri,j if i ∈ S∑
j∈S ri,j if i ∈ S

hi =

{∑
j∈S wj · c(pS

i,j) if i ∈ S∑
j∈S wj · c(pS

i,j) if i ∈ S
(3)

Finally, for each edge (i, j) ∈ (S×S), αi,j = hi+hj+d(i, j)·∑i∈S wi is computed
and returned as the subroutine’s result. If S ∪ S = V holds, a tree T (i,j) (both
components connected by edge (i, j)) has the cost of c(T (i,j)) = c(T )−αe +αi,j .
If S ∪ S � V , αi,j does not reflect the exact costs and can only be used as a
heuristic criterion to select an edge. Using this approach, the cost of evaluating
O(n2) many candidate edges is reduced to O(n2) time compared to O(n3) for a
naive approach.

2.3 Construction of Initial Solutions

Minimum Spanning Trees. As argued by Rothlauf et al. in [11], good solu-
tions for the OCST are biased towards minimum spanning trees (MST). The
complexity for this algorithm is O(m + n log n) using Prim’s algorithm.

Star Trees. Palmer and Kershenbaum suggest in [5] to construct star-shaped
trees as initial solutions, motivated by the fact that a star tree is the optimal
solution for special cases [1]. The evaluation of all possible trees to find the best
star can be done time O(n2), where the cost of a tree Ti with node i as root is

c(Ti) =
∑

j∈VT

d(i, j) · wj wj =
∑

k∈VT

r(j, k) (4)

Ahuja-Murty Construction. The tree construction heuristic from [4] closely
resembles the local search algorithm from the same paper by starting from a
random node and iteratively appending edges to the partial solution. Initially,
all communication is routed over the shortest paths in G. When adding edges
to the partial solution, traffic between nodes in the partial solution has to be
routed over the tree increasing the communication cost, therefore the edges to be
added are selected to be communication cost optimal. This construction heuristic
requires building all-pairs shortest paths pG in advance, which dominates the
total time complexity (O(n3)). The algorithm itself is shown in Fig. 2. The edge
evaluation is performed using the subroutine as specified in Sec. 2.2.

2.4 Local Search

The local search (Fig. 3) in our algorithm performs a sequence of 1-exchange
steps and was originally presented in [12]. Within the local search, all edges
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1 procedure TreeBuilding(G(V,E))
2 pG ← AllPairsShortestPath(G) � Building pG costs O(n3) time
3 T ← ∅ � Empty tree
4 c(pT )← 0 � No paths in empty tree
5 s← Seed(G) � Select seeding node
6 S ← {s}
7 S ← V \ S

8 while |S| < |V | do
9 α← Alpha(S, S, pG

i,j , p
T
i,j) � Determine α as described in Sec. 2.2

10 (p, q)← arg min(p,q)∈(S×S){αp,q} � Select edge with minimal α
11 for each i ∈ S do
12 c(pT

i,q)← c(pT
i,p) + d(p, q) � Update path costs for pT

13 end for
14 S ← S ∪ {q} � Update components
15 S ← S \ {q}
16 end while
17 return T
18 end procedure

Fig. 2. Tree construction heuristic according to Ahuja and Murty [4]

ET∗ from the current solution T ∗ are evaluated in an 1-exchange operation,
where the order in which the edges are visited influences the final solution. Our
implementation follows the original algorithm’s approach to use a queue, which
is filled with all tree edges at the beginning (line 3). Edges to be removed are
pulled from the queue’s head (line 5) and inserted edges are appended to the
queue (line 11). Once an edge e has been selected, the tree is cut into two
components S and S by removing e. Whereas the original algorithm evaluates
any possible candidate edge from (S×S), we select a subset of nodes from both
components limiting the set of candidate edges to (S′ × S′). Various selection
strategies have been discussed in [12], however, it has been shown that randomly
sampling a small subset of nodes is the best strategy, as any possible candidate
edge may be included in (S′ × S′). In subroutine Alpha, determining h is the
most time consuming part of this algorithm which initially led to the idea of
operating on subsets S′ ⊆ S and S′ ⊆ S.

2.5 Recombination

Exhaustive Recombination. The exhaustive recombination algorithm (Fig. 4)
is inspired by the exact algorithm in [4]. The major difference is that only edges
from parent trees Ta and Tb are considered in the search. The algorithm begins
with two initialization steps. In the first initialization step (lines 2–7) several
variables are initialized, such as the initial partial solution T ′, containing only
edges common to both parent trees, and edge sets E∗ and E′ containing edges
occurring only in the better or worse parent, respectively. The second initializa-
tion step (lines 8–13) builds a stack of partial solutions and candidate edge set
starting from the partial solution T ′ containing only common edges. Iteratively,
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1 procedure LocalSearch(T )
2 T ∗ ← T � T ∗ is current favorite solution
3 Q← ET � Initialize queue
4 while not every edge in Q visited do
5 e = Pull(Q) � Fetch edge from queue
6 (S, S)← CutTree(T ∗, e) � Cut T ∗ into two components S and S
7 (S′, S′)← SelectCities(S, S) � S′ ⊆ S, S′ ⊆ S
8 α← Alpha(S′, S′, pT∗

i,j , pT∗
i,j ) � Determine α as described in Sec. 2.2

9 (p, q)← arg min(p,q)∈(S′×S′){αp,q} � Select edge with minimal α

10 T ∗ ← T ∗ \ {e} ∪ {(p, q)} � Update tree T ∗

11 Push(Q, (p, q)) � Add edge to queue � Add new edge to queue
12 end while
13 return T ∗ � Return best solution
14 end procedure

Fig. 3. Iterated Local Search (1-exchange neighborhood) with Random Sampling

edges from E∗ are added to the tree which is pushed on the stack together with
the edge set E′. This strategy fills the branch&bound-like algorithm’s stack as
if the algorithm had always branched by selecting edges from the better parent
solution. Thus the main loop (lines 14–32) starts with partial solutions close to
the better solution parent solution Ta, but departs from it when exploring the
search space further. At the beginning of each loop iteration, a position in the
search space consisting of a partial solution T ′ and a set of candidate edges E′

is fetched from the stack. If the partial solution T ′ is actually a valid solution, it
may be stored as a candidate final solution and the upper bound is lowered. Oth-
erwise, an edge e is selected. The algorithm branches in two possible search space
regions containing trees with or without e, respectively. To increase the efficiency
of the search, the partial solution and the candidate edge set are checked if they
combined hold enough edges for future valid solutions (line 24) and if the partial
solution including e does not contain a cycle and is below the upper bound (line
28). For each passed check, the modified partial solution and candidate edge sets
are pushed on the stack. The main loop terminates when the stack is empty, but
may terminate earlier once a given time bound or iteration count is reached.

Tree Building Recombination. The tree building recombination algorithm
(Fig. 5) reuses concepts from the tree building algorithm from [4]. This recombi-
nation operator determines the set of common fragments T in both parents Ta

and Tb first. A fragment is defined as a connected set of edges that are contained
in both parents. A path length matrix c(pTi,j) is initialized with the all-pairs
shortest paths’ length in G and updated with the unique paths’ lengths from
the fragments. The offspring solution is initialized by the fragment that contains
a randomly selected node s (line 5). As long as not all fragments are connected
in the offspring, edge (p, q) ∈ S × S which increases the offspring cost the least
is selected for insertion evaluating the set of fragments in Alpha (see Sec. 2.2).
Once q has been determined, its fragment is inserted into the partial tree and
the path length matrix is updated with the new edges in the partial solution.
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1 procedure ExhaustiveRecombination(Ta, Tb)
2 S ← ∅ � Start with empty stack
3 T ∗ ← Ta � Initial best solution
4 z∗ ← c(Ta) � Set upper bound
5 T ′ ← ETa ∩ ETb � Initial partial solution with common edges
6 E∗ ← ETa \ ETb � Edges only in better parent
7 E′ ← ETb \ETa � Edges only in worse parent

8 while |E∗| > 0 do � Prepare stack
9 Push(S, (T ′, E′)) � Put current state on stack

10 e← arg mine∈E∗ d(e) � Fetch shortest edge from E∗

11 T ′ ← T ′ ∪ {e} � Add e to growing partial solution
12 E∗ ← E∗ \ {e}
13 end while

14 while |S| > 0 do
15 (T ′, E′)← Pop(S) � Fetch current state from stack
16 if IsTree(T ′) then � Valid solution found
17 if c(T ′) < c(T ∗) then � New best tree found
18 T ∗ ← T ′ � Store new best tree
19 z∗ ← c(T ∗) � Update upper bound
20 end if
21 else if |E′| > 0 then � Branch search
22 e← arg mine∈E′ d(e) � Fetch shortest edge from E′

23 E′ ← E′ \ {e}
24 if |E′|+ |ET ′ | ≥ |V | − 1 then � Enough edges left for a tree?
25 Push(S, (T ′, E′)) � Branch that does not contain edge e
26 end if
27 T ′ ← T ′ ∪ {e}
28 if IsValid(T ′) ∧ c′(T ′) < z∗ then � T ′ still valid and below LB?
29 Push(S, (T ′, E′)) � Branch that must contain edge e
30 end if
31 end if
32 end while
33 return T ∗ � Return best solution
34 end procedure

Fig. 4. Recombination of two parent trees Ta and Tb to an offspring tree T ∗ using the
Exhaustive recombination algorithm. W. l. o g. c(Ta) ≤ c(Tb)

Path Merging Recombination. The path merging recombination algorithm
(Fig. 6) is the only operator that does not use the OCST cost function dur-
ing recombination. Starting with a random seeding node in S and S = V \
S, iteratively, until all nodes are connected by the partial solution, a node
s ∈ S and one parent T ∈ {Ta, Tb} are selected (lines 7 and 8). Using Di-
jkstra’s shortest path algorithm, the shortest path in T from s to the clos-
est node in S is determined. All edges from this path are added to the par-
tial tree (line 10), nodes from the path are added to S. No cycles can occur.
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1 procedure TreeBuildingRecombination(Ta, Tb)
2 T ← {T1, . . . , Tk} � Determine fragments of common edges
3 pT ← AllPairsShortestPath(G) � Building pG costs O(n3) time
4 s← Seed(G) � Select seeding node
5 T ∗ ← args∈T T ∈ T � Initialize partial solution with s’s fragment
6 T ← T \ {T ∗} � Update fragment set
7 S ← VT∗ � Update components
8 S ← V \ S

9 while |S| < |V | do
10 α← Alpha(S, S, pT

i,j , p
T
i,j) � Determine α as described in Sec. 2.2

11 (p, q)← arg min(p,q)∈(S×S){αp,q} � Select edge with minimal α

12 T ′ ← argq∈T T ∈ T � Determine q’s fragment
13 T ← T \ {T ′} � Update fragment set
14 T ∗ ← T ∗ ∪ T ′ � Add q’s fragment to partial solution
15 for each (i, j) ∈ (S × VT ′) do
16 c(pT

i,j)← c(pT
i,p) + d(p, q) + c(pT

q,j) � Update path costs for pT
i,j

17 end for
18 S ← S ∪ VT ′ � Update components
19 S ← V \ S
20 end while
21 return T ∗ � Return solution
22 end procedure

Fig. 5. Recombination of two parent trees Ta and Tb to an offspring tree T ∗ using the
Tree Building recombination algorithm

1 procedure PathRecombination(Ta, Tb)
2 T ∗ ← ∅

3 s← Seed(G) � Select seeding node
4 S ← {s} � Initialize components
5 S ← V \ S
6 while |S| < |V | do
7 s← Seed(S) � Select node not in S
8 T ← Select(Ta, Tb) � Select tree, alternating between Ta and Tb

9 p← arg minpT
s,s′ with s′∈S |pT

s,s′ | � Find shortest path in G to a node in S

10 T ∗ ← T ∗ ∪ p � Add path to partial solution
11 S ← S ∪ Vp � Update components
12 S ← S \ Vp

13 end while
14 return T ∗ � Return solution
15 end procedure

Fig. 6. Recombination of two parent trees Ta and Tb to an offspring tree T ∗ using the
Path recombination algorithm
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3 Experimental Setup

We used both standard benchmark instances and random problem instances
constructed similar to the specification in [13]. From the set of benchmark in-
stances, we selected two instances from the Raidl series (50 and 100 nodes).
The randomly constructed problem instances use a two-dimensional grid of size
1000 × 1000. Demands between nodes are randomly selected from the interval
[0, 100]. For instances where non-Euclidean distances were used, the distances
were taken from the interval [0, 100]. For Euclidean instances, node
coordinates are randomly selected and the distance from node i to j is de-
fined as d(i, j) = 
√(xi − xj)2 + (yi − yj)2 + 0.5�. Coordinates, distances, and
demands are restricted to natural numbers. Here, four random instances were
created with sizes 300 and 500 using both Euclidean and non-Euclidean dis-
tances. The best known solutions are 806 864 (Raidl.50), 2 561 543 (Raidl.100),
15 330 782 (Rand.300), 1 612 822 306 (Rand.300.E), 37 744 037 (Rand.500), and
4 481 969 584 (Rand.500.E).

Initial trees were constructed using either the construction heuristic from
Ahuja and Murty (AM-C), a minimum spanning tree (MST), a random tree
(RAND) or using the best star tree (STAR). These construction heuristic were
randomly seeded, if possible. The population size of the MA was set to either 2,
4, or 8. Recombination operators from Sec. 2.5 were used: Tree-building (TB),
Path Merging (PM), and Exhaustive recombination (EXH). For comparison, a
Replacement recombination (RPL) was also applied using the better of two par-
ents as the new offspring. Each individual of the current population is guaranteed
to be part of at least one recombination. Offsprings from the recombination were
subject to a local search improvement as described in Sec. 2.4. No explicit mu-
tation was performed. Iteratively, until the next population was complete, two
individuals were randomly selected from the combined set of parent and offspring
individuals and the better of both was inserted into the next generation.

For comparison, each instance and each initial solution was also solved by
iterated local search algorithms (ILS) using our implementation of the Ahuja
and Murty tree improvement heuristic (AM-H) and the Random Sampling AM
algorithm (RSAM) as described in [12]. For an instance with n nodes the ter-
mination criterion was the time limit of 
n/50�2 CPU seconds. Alternatively, a
convergence detection heuristic terminated an algorithm once it did not find any
improvement within the last half of its elapsed running time. Experiments were
conducted on a 3.0GHz Pentium 4 CPU. Every setup was repeated 15 times,
average values were used for discussion.

4 Results

Results as discussed in this section are shown in Tables 1, 2, and 3. The first
three columns of each table describe the setup, the other columns are ordered
into four groups of two columns each. Each column group shows the average cost
and excess of setups when starting with one of the four construction heuristic.
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For each instance, the first four rows summarize the initial solution cost, the best
known solution, and the results for both iterated local search algorithms AM-H
and RSAM. The remaining rows for each instance are ordered into four groups
of rows summarizing the results from each of the four recombination operators,
each having three rows for setups with population size 2, 4, or 8.

Table 1. Results for the instances from the Raidl series (50 or 100 nodes, respectively)

Constr. Heur. → RAND MST STAR AM-C
↓ Solver Cost Excess Cost Excess Cost Excess Cost Excess

In
st

a
n
c
e
R
a
i
d
l
.
5
0

Init 24.0 · 106 2879 % 979341 21.38 % 4372492 442% 813948 0.88%
Best 806864 0.00% 806864 0.00% 806864 0.00% 806864 0.00%
AM-H 807244 0.05% 807516 0.08% 806972 0.01% 808061 0.15%
RSAM 816103 1.14% 814725 0.97% 815607 1.08% 811048 0.52%

T
B

2 807131 0.03% 807029 0.02% 806864 0.00% 807027 0.02%
4 806864 0.00% 807079 0.03% 806891 0.00% 806864 0.00%
8 806864 0.00% 807289 0.05% 806864 0.00% 806864 0.00%

E
X

H 2 21.5 · 106 2573 % 807217 0.04% 876360 8.61% 806864 0.00%
4 19.5 · 106 2320 % 807638 0.10% 1113753 38.03% 806864 0.00%
8 18.7 · 106 2228 % 807599 0.09% 1377920 70.77% 806864 0.00%

P
M

2 807615 0.09% 806864 0.00% 807083 0.03% 806864 0.00%
4 807371 0.06% 807398 0.07% 807500 0.08% 806864 0.00%
8 814368 0.93% 810679 0.47% 810520 0.45% 806864 0.00%

R
P

L 2 806889 0.00% 806889 0.00% 806864 0.00% 806864 0.00%
4 806889 0.00% 807487 0.08% 806864 0.00% 806864 0.00%
8 807425 0.07% 807221 0.04% 806864 0.00% 806864 0.00%

In
st

a
n
c
e
R
a
i
d
l
.
1
0
0

Init 143.6 · 106 5507 % 3486328 36.10 % 20.6 · 106 708% 2644050 3.22%
Best 2561543 0.00% 2561543 0.00% 2561543 0.00% 2561543 0.00%
AM-H 2661344 3.90% 2564279 0.11% 2600212 1.51% 2639093 3.03%
RSAM 2573098 0.45% 2574815 0.52% 2574302 0.50% 2574172 0.49%

T
B

2 2564878 0.13% 2562310 0.03% 2601058 1.54% 2589910 1.11%
4 2564511 0.12% 2561909 0.01% 2575482 0.54% 2566027 0.17%
8 2562643 0.04% 2561771 0.01% 2574373 0.50% 2564389 0.11%

E
X

H 2 132.7 · 106 5082 % 2562276 0.03% 9376789 266% 2595384 1.32%
4 121.0 · 106 4627 % 2610051 1.89% 9558582 273% 2569575 0.31%
8 110.2 · 106 4205 % 2614602 2.07% 9525772 272% 2568730 0.28%

P
M

2 2649386 3.43% 2575410 0.54% 2609416 1.87% 2589611 1.10%
4 2644876 3.25% 2563409 0.07% 2667741 4.15% 2564360 0.11%
8 2707643 5.70% 2585404 0.93% 2702280 5.49% 2565865 0.17%

R
P

L 2 2660527 3.86% 2574575 0.51% 2639802 3.06% 2586628 0.98%
4 2635336 2.88% 2562625 0.04% 2650752 3.48% 2562574 0.04%
8 2683333 4.75% 2561543 0.00% 2650826 3.49% 2561543 0.00%

Tree Construction. Regarding the quality of the initial solutions, the con-
struction heuristic AM-C finds the best trees for the Raidl series instances. For
Raidl.50, it finds the optimal tree in about half of all cases resulting in an av-
erage excess of 0.88 %. The second best construction heuristic is MST, finding
trees with an excess of 21.4 % (Raidl.50) to 36.1 % (Raidl.100). Star trees are
surprisingly poor solutions resulting in an excess of 442 % (Raidl.50) to 708 %
(Raidl.100). For random instances, construction heuristic show different perfor-
mance depending on whether the instance uses Euclidean or random distances.
For Euclidean trees, star trees represent the best initial solution (4.91 % excess
for Rand.500.E), whereas for random distances, AM-C performs best (3.62 %
excess for Rand.500). For both instance types, MST is the second best choice



180 T. Fischer and P. Merz

Table 2. Results for random instances with 300 nodes, either without or with Euclidean
distances (upper and lower table half, respectively).

Constr. Heur. → RAND MST STAR AM-C
↓ Solver Cost Excess Cost Excess Cost Excess Cost Excess

In
st

a
n
c
e
R
a
n
d
.
3
0
0

Init 2.3 · 109 15202 % 25.0 · 106 63.18% 202.6 · 106 1222% 15.7 · 106 3.05%
Best 15.3 · 106 0.00% 15.3 · 106 0.00% 15.3 · 106 0.00% 15.3 · 106 0.00%
AM-H 15.9 · 106 3.88% 15.8 · 106 3.48% 15.7 · 106 2.46% 15.5 · 106 1.67%
RSAM 15.5 · 106 1.63% 15.7 · 106 2.48% 15.7 · 106 2.65% 15.6 · 106 1.79%

T
B

2 15.4 · 106 0.77% 15.6 · 106 1.81% 15.7 · 106 2.49% 15.4 · 106 0.89%
4 15.3 · 106 0.44% 15.3 · 106 0.33% 15.7 · 106 2.44% 15.3 · 106 0.42%
8 15.3 · 106 0.06% 15.3 · 106 0.13% 15.7 · 106 3.05% 15.3 · 106 0.12%

E
X

H 2 2.1 · 109 13724 % 23.8 · 106 55.66% 53.1 · 106 247% 15.5 · 106 1.17%
4 2.0 · 109 13198 % 22.9 · 106 50.00% 51.3 · 106 235% 15.4 · 106 0.52%
8 1.9 · 109 12352 % 22.5 · 106 46.92% 51.0 · 106 233% 15.3 · 106 0.23%

P
M

2 15.5 · 106 1.58% 15.6 · 106 2.25% 15.7 · 106 2.84% 15.5 · 106 1.14%
4 15.9 · 106 4.22% 15.7 · 106 2.81% 15.8 · 106 3.38% 15.4 · 106 0.52%
8 16.5 · 106 7.68% 16.1 · 106 5.27% 16.4 · 106 7.51% 15.3 · 106 0.23%

R
P

L 2 15.7 · 106 2.77% 16.0 · 106 4.65% 15.6 · 106 2.10% 15.4 · 106 0.79%
4 15.8 · 106 3.25% 15.7 · 106 2.47% 15.7 · 106 2.44% 15.3 · 106 0.37%
8 15.8 · 106 3.26% 15.6 · 106 2.19% 15.8 · 106 3.21% 15.3 · 106 0.07%

In
st

a
n
c
e
R
a
n
d
.
3
0
0
.
E

Init 24.2 · 109 1406 % 2.7 · 109 68.09% 1.6 · 109 5.19% 5.4 · 109 239 %
Best 1.6 · 109 0.00% 1.6 · 109 0.00% 1.6 · 109 0.00% 1.6 · 109 0.00%
AM-H 1.6 · 109 1.71% 1.6 · 109 1.18% 1.6 · 109 0.47% 1.6 · 109 0.71%
RSAM 1.6 · 109 0.72% 1.6 · 109 0.76% 1.6 · 109 0.65% 1.6 · 109 0.74%

T
B

2 1.6 · 109 1.90% 1.6 · 109 1.73% 1.6 · 109 1.62% 1.6 · 109 1.88%
4 1.6 · 109 2.89% 1.7 · 109 6.70% 1.6 · 109 2.52% 1.7 · 109 5.61%
8 1.6 · 109 4.74% 1.6 · 109 4.20% 1.6 · 109 3.13% 1.6 · 109 4.24%

E
X

H 2 22.0 · 109 1269 % 1.8 · 109 17.25% 1.6 · 109 5.06% 5.2 · 109 228 %
4 20.7 · 109 1187 % 1.8 · 109 13.19% 1.6 · 109 4.98% 5.2 · 109 228 %
8 20.0 · 109 1140 % 1.8 · 109 12.41% 1.6 · 109 5.09% 5.2 · 109 223 %

P
M

2 1.6 · 109 0.87% 1.6 · 109 0.78% 1.6 · 109 0.68% 1.6 · 109 0.77%
4 1.6 · 109 1.10% 1.6 · 109 1.18% 1.6 · 109 1.02% 1.6 · 109 1.09%
8 1.6 · 109 1.59% 1.6 · 109 1.58% 1.6 · 109 1.32% 1.6 · 109 1.85%

R
P

L 2 1.6 · 109 1.04% 1.6 · 109 0.97% 1.6 · 109 0.45% 1.6 · 109 0.79%
4 1.6 · 109 0.95% 1.6 · 109 0.93% 1.6 · 109 0.56% 1.6 · 109 0.74%
8 1.6 · 109 0.86% 1.6 · 109 1.07% 1.6 · 109 0.74% 1.6 · 109 0.81%

with an excess of 68.9 % and 102 %, respectively. Finally, random trees are the
worst choice in any case having an excess of >1000 %.

Local Search. For small instances, the AM-H performs better compared to
RSAM. E. g. AM-H finds solutions with excess 0.05 % for Raidl.50 starting
from random trees, whereas RSAM’s average excess is 1.14 %. For larger in-
stances, RSAM usually performs better, as for the same setup with Raidl.100
the RSAM’s average excess is 0.45 % compared to 3.90 % for AM-H. For non-
Euclidean random instances, AM-H performs best when starting from AM-C-
based trees. For these instances, the average cost depends more on the initial
tree compared to RSAM. E. g. for Rand.300, the excess ranges from 1.67 % (AM-
C) to 3.88 % (RAND), whereas RSAM’s excess ranges from 1.63 % (RAND) to
2.65 % (STAR) and is thus more independent from the initial tree. For Eu-
clidean random instances, best results can be expected starting from star trees



A Memetic Algorithm for the Optimum Communication 181

Table 3. Results for random instances with 500 nodes, either without or with Euclidean
distances (upper and lower table half, respectively).

Constr. Heur. → RAND MST STAR AM-C
↓ Solver Cost Excess Cost Excess Cost Excess Cost Excess

In
st

a
n
c
e
R
a
n
d
.
5
0
0

Init 8.4 · 109 22336 % 63.7 · 106 68.88 % 582.6 · 106 1444% 39.1 · 106 3.62%
Best 37.7 · 106 0.00% 37.7 · 106 0.00% 37.7 · 106 0.00% 37.7 · 106 0.00%
AM-H 40.2 · 106 6.63% 40.0 · 106 6.08% 41.8 · 106 10.95% 38.8 · 106 2.91%
RSAM 39.2 · 106 3.88% 38.8 · 106 3.03% 40.6 · 106 7.73% 38.8 · 106 2.95%

T
B

2 38.4 · 106 1.88% 39.6 · 106 5.09% 41.3 · 106 9.65% 38.3 · 106 1.69%
4 38.1 · 106 1.06% 38.5 · 106 2.15% 40.5 · 106 7.33% 38.1 · 106 1.15%
8 37.9 · 106 0.52% 38.7 · 106 2.59% 40.5 · 106 7.34% 37.9 · 106 0.61%

E
X

H 2 8.0 · 109 21342 % 61.1 · 106 61.92 % 117.3 · 106 211% 38.4 · 106 1.95%
4 7.2 · 109 19223 % 58.5 · 106 55.25 % 114.7 · 106 204% 38.2 · 106 1.23%
8 6.8 · 109 18136 % 56.5 · 106 49.74 % 115.7 · 106 207% 38.0 · 106 0.71%

P
M

2 39.5 · 106 4.91% 39.8 · 106 5.53% 40.7 · 106 8.09% 38.4 · 106 1.95%
4 40.0 · 106 6.16% 40.0 · 106 6.12% 41.3 · 106 9.59% 38.2 · 106 1.23%
8 42.1 · 106 11.72% 53.2 · 106 40.98 % 43.0 · 106 14.13% 38.0 · 106 0.71%

R
P

L 2 40.2 · 106 6.63% 39.8 · 106 5.53% 41.0 · 106 8.68% 38.3 · 106 1.62%
4 40.1 · 106 6.34% 39.6 · 106 5.03% 41.0 · 106 8.71% 38.1 · 106 1.01%
8 40.0 · 106 6.17% 39.5 · 106 4.91% 40.9 · 106 8.59% 37.9 · 106 0.57%

In
st

a
n
c
e
R
a
n
d
.
5
0
0
.
E

Init 86.0 · 109 1821% 9.0 · 109 102 % 4.7 · 109 4.91% 16.5 · 109 270%
Best 4.4 · 109 0.00% 4.4 · 109 0.00% 4.4 · 109 0.00% 4.4 · 109 0.00%
AM-H 4.5 · 109 1.31% 4.5 · 109 1.35% 4.5 · 109 0.58% 4.5 · 109 1.02%
RSAM 4.5 · 109 0.53% 4.5 · 109 0.68% 4.4 · 109 0.32% 4.5 · 109 0.56%

T
B

2 4.8 · 109 7.11% 4.6 · 109 3.60% 4.6 · 109 4.39% 4.6 · 109 4.39%
4 4.8 · 109 7.58% 4.8 · 109 7.58% 4.6 · 109 4.75% 4.7 · 109 7.00%
8 4.7 · 109 6.29% 4.7 · 109 5.61% 4.6 · 109 4.44% 15.4 · 109 244%

E
X

H 2 80.6 · 109 1699% 4.9 · 109 9.33% 4.7 · 109 4.87% 16.0 · 109 258%
4 73.3 · 109 1536% 4.8 · 109 7.81% 4.7 · 109 4.87% 15.8 · 109 253%
8 68.9 · 109 1439% 4.8 · 109 7.44% 4.7 · 109 4.87% 15.5 · 109 248%

P
M

2 4.5 · 109 0.89% 4.5 · 109 0.71% 4.5 · 109 0.59% 4.5 · 109 0.86%
4 4.5 · 109 1.04% 4.5 · 109 0.98% 4.5 · 109 0.80% 4.5 · 109 1.17%
8 4.5 · 109 1.43% 4.5 · 109 1.44% 4.5 · 109 1.20% 4.5 · 109 2.29%

R
P

L 2 4.5 · 109 0.98% 4.5 · 109 0.73% 4.5 · 109 0.42% 4.5 · 109 0.85%
4 4.5 · 109 0.95% 4.5 · 109 0.73% 4.5 · 109 0.48% 4.5 · 109 0.90%
8 4.5 · 109 0.99% 4.5 · 109 0.81% 4.5 · 109 0.63% 4.5 · 109 1.33%

when using AM-H. E. g. for Rand.500.E, trees with an excess of 0.58 % were
found compared to solutions based on initial solutions from AM-C (1.02 %) or
MST (1.35 %). Again, the larger the instance, the better RSAM performs com-
pared to AM-H confirming our findings from [12]. E. g. for Rand.500, the RSAM
approach finds better solutions in three out of four setups.

Tree Building Recombination Operator. For Raidl and random non-Eu-
clidean instances, the TB operator is the fastest converging recombinator when
starting from random trees. For the other types of initial trees, this recombi-
nation operator is performing well, too, but for several setups RPL and PM
perform better. Larger populations usually allow this recombinator to find good
solutions even faster. E. g. for Rand.300 starting from an MST, the average ex-
cess is 1.81 % for a population of size 2, but it is 0.13 % for populations of size
8. For Euclidean distance based instances, however, the same recombination op-
erator is surpassed by all other setups except EXH. For instances where AM-C
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finds good initial trees, TB performs very well starting from random solutions,
as in this case the two parent trees have few edges in common and thus TB re-
builds the tree using an AM-C-like heuristic resulting in much better offsprings.
Drawback of TB is that it becomes too expensive for larger instances due to
its computation complexity. Furthermore, offspring trees may have worse fitness
than the parent trees as new edges are introduced.

Exhaustive Recombination Operator. The Exhaustive heuristic’s perfor-
mance heavily depends on the similarity of both parent trees as otherwise an
expensive search in the solution space will be performed. Especially for setups
with random initial trees, recombining is far too expensive resulting in little to
no improvement within the given time bounds. Regarding the Raidl instances,
only for trees based on the MST or AM-C heuristic this recombination oper-
ator results in trees comparable to those found by other recombination opera-
tors, for non-Euclidean random instances this is true only for AM-C-based trees.
Starting from MST initial solutions, setups on Raidl instances converge slower
with increasing population size, whereas for random instances setups converge
faster with increasing population size. E. g. for Raidl.100 and population size
2, the average excess is 0.03 %, whereas for population size 8, it is 2.07 %. For
Rand.500.E the excess decreases from 9.33 % to 7.44 %.

Path Merging Recombination Operator. The Path Merging operator im-
proves a solution slowest but constantly in most setups, but eventually reaches
good near-optimum solutions given enough time. Regarding population size, this
recombination operator finds on average better results with smaller population
sizes (2) than with larger populations (8) in all cases except for AM-C setups
with Raidl or non-Euclidean random instances. E. g. for Raidl.100 and starting
from random trees, setups with population size 2 are 3.40 % above the opti-
mum on average, but have an excess of 5.70 % for population size 8. For random
Euclidean instances, PM is the best performing operator next to RPL.

Replacement Recombination Operator. To evaluate the recombination op-
erators above, experiments with a Replacement operator have been conducted.
RPL’s performance relies on the local search’s performance only. As no diversifi-
cation is introduced, early convergence can be expected when starting from poor
initial solutions. E. g. for Raidl.100 starting from random trees, the average so-
lution excess is 3.86 %, 2.88 %, and 4.75 % (2, 4, and 8 individuals) using the
replacement recombinator, whereas a more sophisticated recombination opera-
tor such as the Tree Building recombinator achieves solutions of excess 0.13 %,
0.12 %, and 0.04 %, respectively, on average. Still, the replacement operator is
the best recombination setup for random instances using Euclidean distances.

Global Trends. For all instances where the AM-C heuristic performs best in
constructing trees, all four recombination operators perform better with larger
population size. E. g. for Rand.300 and the PM operator, the average final ex-
cess is 1.14 % when using a population size of 2, whereas it is 0.23 % with a
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Fig. 7. Example plots visualizing the performance of different recombination setups in
comparison to two iterated local search algorithms

population size of 8. Raidl and random instances with non-Euclidean distances
show comparable behavior in similar setups, whereas random instances with Eu-
clidean distances form their own group. E. g. TB is one of the best performing
recombination operators for the former group, but performs worse than PM for
the latter group. The memetic algorithm’s convergence speed is slower compared
to both ILS algorithms when applied to random instances with Euclidean dis-
tances (see Fig. 7a), but is able to surpass the ILS algorithms for non-Euclidean
instances by using TB or PM, given enough time (see Fig. 7b).

5 Conclusions

We discussed a memetic algorithm for the OCST by evaluating aspects such as
choice of initial solutions and recombination operator. For evaluation we used
both real-world based instances (Raidl series) and randomly generated instances
with and without Euclidean distances.

For instances with non-Euclidean (random) distances, our memetic algorithm
outperforms the iterated local search algorithms AM-H and RSAM. Compared
with other recent publications which mostly focus on pure evolutionary algo-
rithms, our MA clearly outperforms these approaches. Our algorithm success-
fully processes instances with sizes not yet covered in previous publications.

Future work will focus on optimizing the presented algorithms and experi-
menting with larger instances. We are planning to develop a distributed memetic
algorithm and to perform a search space analysis for non-Euclidean instances.
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Abstract. We discuss a general approach to hybridize traditional con-
struction heuristics for combinatorial optimization problems with nume-
rical based evolutionary algorithms. Therefore, we show how to augment a
construction heuristic with real-valued parameters, called control values.
An evolutionary algorithm for numerical optimization uses this enhanced
heuristic to find assignments for these control values, which in turn en-
able the latter to find high quality solutions for the original combinatorial
problem. Additionally to the actual optimization task, we thereby exper-
imentally analyze the heuristic’s substeps.

Furthermore, after finding a good assignment for a specific instance
set, we can use it for similar yet different problem instances, without the
need of an additional time-consuming run of the evolutionary algorithm.
This concept is of particular interest in the context of computing efficient
bounds within Branch-and-Cut algorithms. We apply our approach to a
real-world problem in network optimization, and present a study on its
effectiveness.

1 Introduction

We consider a hybrid approach to use numerical evolutionary algorithms for
solving NP-complete combinatorial network design problems. Most traditional
hybridization approaches consist of developing combinatorial representations of
solutions for use in evolutionary algorithms, or of developing meta-search heuris-
tics which use traditional heuristics as subroutines. This results in algorithms
which have, in general, a much longer running time than traditional combinato-
rial construction heuristics.

We divert from these approaches by taking an existing construction heuristic
and augmenting it with control values (CVs). These are simple mostly non-
discrete values, which allow us to modify the behaviour of the algorithm and
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thereby change its outcome: e.g., we may have a CV specifying a degree of
sortedness when performing some heuristic step on a series of items; we may
have a real-valued CV, as a balancing parameter to compute a weighted sum of
two different optimization subcriteria, etc.

In general, we will not know in advance which settings for these CVs are in
fact beneficial. We optimize the performance of the heuristic on a specific problem
instance or instance set with a general-purpose optimization algorithm, namely
an evolutionary algorithm (EA) designed to operate on numerical values. We find
near-optimal settings χ∗ for these CVs, using the augmented heuristic to compute
the objective value for any specific CV instance χ. Whereas this may appear as
’yet another EA application’ on first sight, it is more than that, because

– the EA actively modifies the behaviour of the heuristic and identifying viable
CV settings may not be reasonably possible without the composition with
an optimization algorithm, and

– the performance feedback allows us to obtain new insight into the effective-
ness of specific steps of the heuristic, which may lead to further ideas for
improving the underlying algorithm.

In this paper we analyze this novel approach, by concentrating on a single appli-
cation as a test case for the suggested high-level relay hybridization [7]. Nonethe-
less, we believe that this scheme may be successfully utilized for virtually every
construction heuristic that contains components which have been added on the
basis of ad-hoc or intuitive decisions. Our approach is particularly interesting in
the realm of Branch-and-Cut algorithms.

Our test case is the real-world minimization problem [8] which arises when one
wants to extend an already existing, city-wide fiber-optics or telecommunications
network. This problem is known as the 2-root-connected prize-collecting Steiner
network problem (2RPCSN) and has been studied, e.g., in [3, 8, 9]. In these
papers, different integer linear programming approaches are proposed, which
solve this problem to provable optimality, albeit in exponential worst-case time.
These schemes use Branch-and-Cut techniques and employ heuristic algorithms
as subroutines to generate upper bounds. The currently most successful such
heuristic is described in [3]. The heuristic plays three distinct crucial roles for
solving 2RPCSN in practice:

– Due to the NP-completeness of the problem, and the therefore exponential
running times, computing a provable optimal solution is only feasible for
small to medium sized instances. For large instances, one has to resort to
heuristic approaches.

– ILP-based approaches benefit from good initial solutions. They often allow
faster computation of LP relaxations, and can be used to obtain initial vari-
able sets in column-generation based approaches, i.e., when certain variables
of a linear programm are only added later if required.

– Branch-and-Cut approaches use upper bounds to cut off subtrees in their
Branch-and-Bound trees. These upper bounds are computed using heuris-
tics which can deal with the fact that certain variables are fixed at some
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Branch-and-Bound node. Thereby, sophisticated bounding and efficient
heuristics allow to solve larger instances and therefore increase the appli-
cability of optimal algorithms.

Based on these demands, we can differentiate between different use-cases for our
hybridization:

Online: The heuristic consists of running the evolutionary algorithm and out-
puts the best solution found. The CV optimization is thereby a vehicle to
steer the search for different CV instances. The running time is much slower
than using only the combinatorial construction scheme, but the expected
quality of the solutions improves.

Offline: Alternatively, we can run the CV optimization on a set of test problem
instances. The obtained CV instance χ can then be used to solve new problem
instances. The selection of χ is therefore an educated guess which can be
expected to be suitable for instances similar to the test problem instances.
The major advantage is that the resulting running time is virtually the same
as for the original construction heuristic.

Mixed: In the realm of Branch-and-Cut approaches, we can blend these two
approaches in a very natural way: we can use the online variant to generate
both a good initial solution for the problem instance, and also obtain a CV
instance χ∗ which is tuned specifically to this instance. During the time-
critical steps within the branching strategy, we can use the offline variant
with χ∗ to obtain a good and fast bounding heuristic. Note that we do not
have to restrict ourselves to a single χ∗, but we can use, e.g., multiple CV
instances from the last population of the evolutionary algorithm.

We try to answer the specific questions summarized in Section 2. Afterwards we
decribe our general hybridization approach and the evolutionary algorithm in
Section 3, before centering on our specific construction heuristic and its control
values in Section 4. Section 5 and Section 6 focus on the conducted experiments
and their analysis.

2 Aims

The presented hybridization for the above combinatorial network problem is
ment as a proof-of-concept. Therefore our aims are centered on showing its suc-
cess. Although we cannot guarantee the usefulness of this hybridization technique
for completely different problems, we do suggest to try the approach if one can
think of a way to make a specific heuristic configurable.

Before we can legitimatly consider one of the three outlined uses of our ap-
proach, we have to investigate if the hybridization is beneficial at all. Hence, the
concrete aims pursued in this work are:

1. We want to determine if our EA is able to identify CV instances for the
construction heuristic which improve its performance significantly both on
single instances and on sets of similar instances. We thus ask if the heuristic
can be automatically adapted to considered problems.
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2. If Aim 1 can be positively answered, we want to identify where this adapt-
ability stems from, i.e., which of the heuristic’s steps contribute most to an
improved performance, and which CVs can be safely set to default values.

As we expect that the heuristic can benefit from specific properties of certain
problem instances, the detection of such properties is a side goal. Furthermore,
the applied EA variant itself shall be assessed, to obtain a first impression con-
cerning its usefulness for the given task. In the light of a unified EA approach [4],
this resembles the question for a suitable parametrization of the EA.

3 Hybridization

In general, a non-trivial construction heuristic for an NP-hard problem consists
of multiple steps. As the heuristic cannot guarantee to find an optimal solution,
there may be multiple orthogonal reasons for non-optimality, e.g.:

– A single step may be not solvable to optimality in polynomial time, thus
requiring a sub-heuristic.

– The optimization goal of some step s may only be an educated guess in the
context of the complete algorithm, i.e., the optimal solution for the step s
may in fact be subobtimal for the subsequent steps.

– Assume there are multiple steps, whereby their order is crucial for the out-
come of the whole algorithm. The optimal order may be a priori unknown.

The idea is to identify the parts of the heuristic where some step is not based on
theoretically provable facts, but on ad-hoc or statistical decisions. The algorithm
is then modified such that these decisions can be controled via control values. We
present some general cases of how to introduce CVs into construction heuristics.
Our test application described in Section 4 will introduce a CV for most of the
types below. The following list is of course by no means complete, but the list’s
items are meant as examples of a general design pattern.

Selection Decisions: When an algorithm has to choose between two possi-
bilities, or select a subset of elements, we can introduce a simple CV c ∈
[0, 1] ⊂ R. Introducing randomization, we can interprete c as the probability
of choosing one out of two possibilities, or as the probability for an element
to belong to the chosen subset. If the base set S for the latter problem is
ordered, we can also interprete c directly as the selection ratio, without any
randomization: we simply select the first [c · |S|] (rounded) elements.

Balancing Decisions: In many applications, there are subproblems which have
to optimize multiple criteria at once and where it is unclear which of the
different measures is most important for the overall optimization goal. We
can introduce a CV c ∈ [0, 1] ⊂ R to balance two such measures x and y and
obtain a balanced value, e.g., by z := c ·x+(1−c)·y. Note that, if applicable,
the CV c has not be used directly in a linear balancing computation, but
we can use any suitable balancing function. Another balancing problem can
occur when the input is partitioned in sets of different types, e.g., weights
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on nodes and edges of a graph. It might not be clear how much influence
each set has for the overall optimization goal. This is, e.g., the case in our
test application and is resolved via the balance CVs, see Section 4.

Ordering Decisions: Assume an algorithm where there is a sequence of steps
and we do not know beforehand, which order will lead to the best solution.
Traditional algorithms may choose some arbitrary order, often being the
natural order arising from the order in which the input was given; other
algorithms may randomize the order on purpose. Often, one has a certain
guess, which order may be sensible, and sorts the steps accordingly. We can
introduce a CV c ∈ [0, 1] ⊂ R to steer this behaviour in two different ways:
Bi-ordered. Let there be two competing orderings o1 and o2 under consid-
eration. Interpreting c as the probability for selecting o1, we can randomly
choose the first, yet unselected element from one of these orderings. We can
simulate a gradual randomization, by choosing o2 as a random ordering.
Random Range. When mixing a potentially sensible ordering o1 with a ran-
dom ordering, we can interprete c as a ratio of elements. Let n be the num-
ber of ordered elements. For each step, we choose randomly from the first
m = [c · (n− 1) + 1] elements induced by o1. While c = 0 corresponds to the
ordering o1, c = 1 resembles a purely random order.

Treshold Decisions: Sometimes a heuristic step requires the identification of
certain critical values, patterns, graph structures, etc. A CV can be used as
a treshold to determine when a search pattern is considered to be identified.
E.g., a simple treshold decision is the classification of fractional values into
two groups of small and large values, respectively. One has to be careful
with CVs in the context of identifying termination criteria of loops, etc., as
a CV is purely for optimizing the solution quality, and not for optimizing the
computation time: a CV may be suitable if there is no obvious connection
between the number of iterations and the overall optimization goal. But if
a CV would purely decide how often a loop, which iteratively improves the
final solution, is run, a larger iteration count would always be superior to an
earlier termination.

Discrete Decisions: There can be situations when augmenting a specific
heuristic step with numerical values seems not reasonable. There may be
intricately discrete decisions to make. Our approach is stable enough to al-
low integer CVs, although it comes with the usual problems known from
optimizing integer parameters via an evolutionary algorithm, see below.

Natural CVs: Some construction heuristics already offer numerical parame-
ters, e.g., for coarsening the input instance. We call these natural CVs and
can directly use them within our optimization framework. Sometimes sub-
problems are solved via a PTAS, i.e., a polynomial approximation algorithm
which approximates the solution within a choosable bound ε. If it is not clear
that an optimal solution for the subproblem will lead to an optimal solution
for the whole problem, this ε can also be seen as a natural CV already in
the original algorithm.
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Note that the selection of the CVs not only changes the behaviour of the con-
struction heuristic, but also directly influences the evolutionary algorithm and
the applicability of the overall algorithm, due to time constraints: if we have
many CVs, the EA will require more generations to find a near-optimal CV in-
stance. If many CVs introduce statistical noise due to randomization techniques,
the evolutionary algorithm will require more calls to the augmented heuristic to
assess the quality of a single CV instance. Hence, we suggest to drop a CV c
when experiments show a clearly winning setting for c or when it becomes clear
that c has no measurable influence at all.

3.1 Why Using Evolutionary Algorithms for CV Adjustment?

EAs are known as general-purpose direct optimization algorithms which only
require a quality criterion (fitness) but no other additional data, e.g., on the
gradient. They provide generic search operators for virtually every canonic rep-
resentation, e.g., boolean, ordinal discrete, nominal discrete, and real-valued vari-
ables. As they are able to deal with mixed representations, they allow a ‘natural’
problem formulation and are therefore easy to apply. Emmerich et al. [5] give an
example for a mixed integer problem and summarize the search operators for the
basic variable types. Population-based EAs are by design a compromise between
global and local search. If no good starting point is known, an EA usually starts
with a small random sample and learns an internal model from the feedback
obtained by subsequent search steps.

However, there are cases where a näıve EA does not perform well, namely
on approximately random functions, and on simple unimodal functions. In the
first case, there is no structure that could be learned, and in the second case,
more specialized algorithms, e.g., quasi-Newton methods, are much faster. We
assume that the CV optimization problem is neither of them and thus EAs are
applicable. Furthermore, some of the previously described CV types introduce
non-determinism into the target function evaluation, which can be seen as ‘noise’
from the viewpoint of the optimization algorithm. Recent investigations on noisy
functions report that EAs still work reasonably well under such conditions [1].

Summarizing, it makes sense to apply an EA, not only because it can be
easily done, but also since probably stronger analytical methods are unavailable
as virtually nothing is known about the CV-induced search space topology. The
EA shall perform as least as good as random search; if the EA is able to detect
some exploitable structure, it will perform even better.

In our test application, we establish the adaptation of the CVs via a näıve
(μ,λ) evolution strategy (ES) as described in [2]. According to the CV list given
in Section 4, we have six real-valued and two nominal discrete optimization
variables and thus a mixed genome. While this does not pose a problem for
recombination which is performed as a 2-point crossover, the mutation opera-
tor requires special attention: we employ a commonly used normal distributed
mutation for the real-valued variables and conditioned random selection for the
nominal discrete variables. For the random selection, a mutation probability is
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used instead of the mutation strength, and if a change is determined, the new
value is chosen randomly from all other allowed values but the current one.

Mutation step sizes and mutation probabilities, respectively, are controlled by
self-adaptation, thereby learning strategy parameters from successful steps. As
the domain sizes of the six real-valued variables are very similar—either 1 or 2,
see below—we resort to a single strategy parameter, the mutation strength σ. It
is varied by means of a learning rate τ , which also applies to the second strategy
parameter σdis , that resembles the mutation rate for the two nominal discrete
variables. The chosen values for population size, offspring number, initial step
sizes, minimum and maximum step sizes, and learning rate are given below. The
last four have also been used for σdis . Currently, they have not been verified
systematically as this would require too much computation power; instead, they
have been tested against some representatative alternative parameter sets.

μ λ σinit σmin σmax τ
15 100 0.3 0.001 0.5 0.2

4 The Network Problem and a Corresponding Heuristic

Formally, we can describe the 2-root-connected Prize-Collecting Steiner Network
Problem (2RPCSN) as follows: We are given an undirected graph G = (V, E),
a root node r ∈ V , a set of customer nodes C = C1∪̇C2 ⊂ V , a prize function
p : C → R

+ for the customers, and a cost function c : E → R
+ on the edges.

We ask for a subgraph N = (VN , EN ) of G with r ∈ VN which minimizes∑
e∈EN

c(e) −∑
p∈C∩VN

p(v) and satisfies the following connectivity property:
for every node v ∈ Ck ∩VN , k ∈ {1, 2}, N contains at least k node-disjoint paths
connecting v to r. Informally, this means that we look for the most cost-efficient
network, where we can choose which customers we want to connect, based on
the connection costs c and their estimated profits p. For certain customers C2 we
can only descide whether we want to connect them via two disjoint connection
paths, or not at all.

Overview. We sketch the heuristic presented in [3], and explain its modifica-
tions in order to support certain control values: The heuristic starts by choosing
subsets C∗

i ⊆ Ci (i = 1, 2) of customers to be included in the solution. Based
on this customer set C∗ := C∗

1 ∪C∗
2 we heuristically compute a minimal Steiner

tree T as a basis for the next steps. Note that T resembles a feasible solution
if C∗

2 = ∅. We then extend this tree by adding additional paths for the C∗
2 cus-

tomers, and obtain a feasible solution S. Finally, we perform some postprocessing
to shrink S by removing certain nodes and edges without losing feasiblity.

Choose Customers and Construct T . The heuristic is especially suited for
the use within a Branch-and-Bound algorithm. Thereby intermediate fractional
solutions are used to infer suitable sets C∗

1 and C∗
2 . In [3], the setting C∗

1 = C1

and C∗
2 = C2 was suggested for the use as a constructive start heuristic. We

introduce our first two real-valued control values:
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choose1, choose2 ∈ [0, 1] ⊂ R (1)

The CV choosek, k ∈ {1, 2}, determines the fraction of Ck customers, which is
chosen for C∗

k . I.e., having an ordered set of Ck customers, we choose the first
[choosek · |Ck|] vertices as the set C∗

k . Of course the ordering of Ck is crucial.
This leads to two additional integer CVs. Note that the differences between
real-valued and integer CVs are quite interesting, as we will see in Section 6.

sort1, sort2 ∈ {0, 1, 2, 3} ⊂ N (2)

The interpretation of the image set of sortk, k ∈ {1, 2}, is as follows:

0: Ck is permutated randomly.
1: Ck is sorted by decreasing profit p(v) of v ∈ Ck.
2: Ck is sorted by increasing cost z(r → v) of the shortest path from r to v ∈ Ck.
3: Ck is sorted by decreasing efficiency, which is defined as the ratio p(v)

z(r→v) .

After choosing C∗, we apply the Minimum Steiner Tree heuristic by Mehlhorn [6]
to compute the tree T . This algorithm requires the shortest paths between all
pairs of nodes of C∗ ∪ {r}. In [3], these shortest paths are computed using only
the edge costs c. This approach does not take into account that a path might
include a customer node which offers some profit and therefore renders the costly
path cheap or even profitable.

Based on the observation that an inner node of a path is incident to exactly
two edges of the path we would like to use the modified edge costs c′(u, w) :=
c(u, w) − 1

2 (p(u) + p(w)). However, c′ cannot be easily used for shortest paths
computations, as its values may be negative and thus induce negative cycles.
On the other hand, using c′′ := max{c′, 0} as a cost function is problematic
as well: all edges incident to a profitable vertex will have the same cost of 0,
and the algorithm is likely to choose a random edge instead of making a well-
grounded descision. We therefore use the cost function c∗(u, w) := max{c(u, w)−
α1

2 (p(u) + p(w)) , 0}, using the real-valued α ∈ [0, 1] to balance the influence of
the customer profits. As initial experiments showed, α = 0.5 and α = 1 lead to
very similar cost functions, since in both cases edge costs are often truncated to
0. Hence we do not choose α as a CV directly, but use the control value balanceT

which is then transformed into a suitable value for α:

balanceT ∈ [0, 1] ⊂ R (3)

To make up for the aformentioned skew in the α values, we use α = balanceT
3.

Note that we use the resulting cost function not only within the minimum Steiner
tree heuristic, but also for the sorting of Ck if sortk ≥ 2.

Assure 2-Connectivity. The idea is to iteratively extend T by adding shortest
(v → r)-paths for the customer vertices v ∈ C∗

2 for which the 2-connectivity
requirement is not satisfied yet. Let v be such a customer and let Pv the inner
nodes of the unique (r → v)-path in the original T . To find a disjoint second
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path between r to v, we look at the graph G \ Pv, i.e., the graph obtained by
removing all inner nodes of the original tree path, and all their incident edges.
We set the costs of the edges which are already in the solution to 0, and use
the cost function c∗ for the other edges. We then apply Dijkstra’s shortest path
algorithm to identify a path between v and r, and add the resulting path to our
solution. This step uses its own control value

balanceS ∈ [0, 1] ⊂ R (4)

to skew the cost function c∗, analogously to balanceT . This augmentation is
performed for all nodes v ∈ C∗

2 which do not contain any further C2 customers
in their subtrees of T ; let L be the list of these C∗

2 nodes. Note that 2-connecting
v results in proper 2-connectedness for all nodes w ∈ Pv.

The quality of the resulting subgraph S can depend on the order of the nodes
in L. An intuitive idea, as proposed in [3], is to sort these nodes v in descreasing
order by the number of C2 customers in Pv. If this number is identical for
different nodes, we sort those by decreasing overall number of elements in Pv.
However, experiments show that choosing another order can change and improve
the solution quality. Hence, we introduce the real-valued control value

order+ ∈ [−1, 1] ⊂ R. (5)

Let Lr and Lo be copies of the list L. While Lr is a random permutation, the
list Lo is sorted as described above. If order+ is negative, we will reverse Lo.
The absolute value of order+ indicates the probability of taking the next node
from Lo; otherwise the next node from Lr is chosen.

Shrinking. In general, the subgraph S obtained by the previous steps can be
further optimized by removing some nodes and edges from S without losing
feasiblity.

We know that due to the construction, S consists of one or more non-trivial
2-connected components, which have only the root node r in common. All other
components of the graph form trees, which are attached to some 2-connected
component. Having this decomposition in mind we can optimize S in two steps:

As described in [10], the rooted price-collecting Steiner tree problem can be
solved to optimality in linear time, when applied to trees by dynamic program-
ming. We use this algorithm to optimize all attached trees, using the attach-
ment node as its root. For the next step, these root nodes are considered to be
C1 customers with corresponding prizes. These optimizations are optimal and
independent of each other, and hence there is no need for any CVs.

In the final step we try to optimize each non-trivial 2-connected component
B of S. Such components may contain redundant edges, i.e., their removal does
not break the feasibility of the solution. For every B we compute its core graph
B̃. Thereby, every chain of edges only containing nodes v ∈ V \ (C2 ∪ {r}) is
replaced by a single edge. We then successively consider the edges e of B̃: it can
be removed from B̃ if all connectivity requirements are still satisfied for B̃−e. In
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this case, the corresponding path Pe will be broken apart and partially removed.
The optimization within the path Pe can be done optimally and efficiently.

Similar to the steps before, the order in which the core edges are considered
and removed from B̃ may be crucial for the solution quality. An intuitive sorting
criterion is to use the weight of the core edge, i.e., the sum of the edges in Pe

minus the sum of the profits of inner nodes of Pe. We parameterize this order
by a real-valued control value:

order− ∈ [−1, 1] ⊂ R (6)

Again, we have a randomly permutated and a sorted list of core edges. A positive
order− leads to a decreasing order, a negative value leads to an increasing order.
The absolute value of order− gives the probability of choosing the next core edge
from the ordered list, instead of from the randomly permutated list.

Overall, we can give the CV instance which resembles the behaviour of the
original heuristic. Technically, the original heuristic does not use any sorting to
obtain C∗: since the choose CVs are 1, these parameters have no influence.

choose1 choose2 sort1 sort2 balanceT balanceS order+ order−

1 1 any any 0 0 1 1

5 Experimental Assessment of Performance Improvement

We test our hybrid algorithm on three different test sets, which were used and
described in [3]. The groups K and P consist of graphs each containing 400
nodes and a high percentage of customer nodes, allowing us to better analyze
the influence of the choose CVs. In particular, the set K consists of random
geometric instances which were designed to have a structure similar to street
maps. All of these instances could be solved to optimality with the Branch-and-
Cut approach presented in [3]. These instances are chosen in order to evaluate
the absolute solution quality achieved by our algorithm. Additionally, we test
against the instance set ClgM +. These instances are real-world graphs based
on a street map of Cologne. The graphs have 1757 nodes and relatively small
number of customers (up to 15–20 C1 and C2 customers, respectively). As these
instances are hard for the ILP-approach—only one instance could be solved
to optimality within 2 hours—we are in particular interested in improving the
heuristic solutions and in analyzing our approach for its applicability within the
mixed scenario (cf. Section 1).

The following two experiments investigate the question raised as Aim 1 in
Section 2, i.e., does the hybrid approach improve the solution quality when
applied to a single instance or to a group of instances.

5.1 Experiment 1: Does the Hybrid Approach Improve the
Performance over the Default Heuristic on Single Problem
Instances?

Pre-experimental Planning. By initial experiments, we found out that the
run-length of the EA should be limited to at most 10000 evaluations for two
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reasons: firstly, the absolute running times, especially for small problem instances,
are getting too large, and secondly, the optimization typically stagnates after ca.
5000–6000 evaluations. We also tried different numbers of repeats for evaluating
a single CV instance, to smooth the noise introduced by the randomization. It
turned out that 5–10 repeats seem to be a good compromise between speed and
fitness value stability; we perform 10 repeats for the following experiment.

Setup. To test the performance of our hybrid algorithm on single problem in-
stances, we perform 10 repeats for every problem instance and compute the best
and the average objective values over these 10 independent solutions.

Task. We are interested in the improvement of the solutions—both the best and
the average value—compared to the default heuristic, as described in Section 4.
In order to state that the configured hybrid heuristic performs better than the
default heuristic, we require that a Wilcoxon rank sum test is significant at the
5% level at least for the best of the 10 resulting CV instances for each problem
instance, over 100 validation runs of the heuristic.

We are also interested in the solutions’ quality with respect to the known op-
tima [3]. We try to identify successful and unsucessful steps within the heuristic,
which is useful when applying the heuristic to larger problems. Although we do
not know the optima for any but one instance of the ClgM + group, we have lower
and upper bounds stemming from two hours of Branch-and-Cut computation:
they help to estimate the quality of our solutions in these cases.

Results & Observations. See Figure 1 for vizualizations of our experimental
results. For various instances, the default heuristic is not able to find any feasible
solution other then the trivial root-solution, i.e., no customers are selected. Such
root-solutions are 115–689% away from the corresponding optimum. In contrast,
our hybrid algorithm always computes at least one non-trivial feasible solution
for all test instances. For the K and P instances, these solutions are 4–8% away
from the optimum, on average; the gap is 11–15% for the non-trivial solutions
of the default heuristic. The situation is similar for ClgM +, where the default
heuristic can only find the root-solution for two instances. Thereby the improve-
ment by the hybrid algorithm is about 90%. For the other ClgM + instances the
improvement is between 5 and 18%.

Discussion. The obtained results show that our approach reliably leads to good
approximations, even when the default heuristic fails completely. By tuning cer-
tain parts it is therefore possible to obtain a better configured heuristic. The
applied statistical tests confirm a significant improvement, as all p-values except
for K400-8 are below 10−5. In this special case, a significant improvement is
still detected, but slightly below the required level (p-value 0.145). We also see
that the difference between the best and the average performance of 10 adapted
heuristics is rather small. Hence running the EA one or few times seems to be
sufficient to exploit most of the available performance potential.

Additional Validation. In order to verify that the EA performs consistently at
least as well as the random search and often better, we applied both methods to
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Fig. 1. Comparing the behaviour of the default heuristic and the hybrid algorithm on
the single test instances

three problem instances for which the default heuristic fails completely, namely
K400-3, P400-3, and ClgM +-03. The comparison of the mean best values of 20
repeats shows that indeed, the EA always achieves the same or a better fitness
level. However, due to large standard deviations, Wilcoxon rank sum tests do
not get significant at the 5% level (p-values 0.47, 0.91, and 0.08, respectively).
Nonetheless, we can see a wide performance gap for the largest instance ClgM +-
03. This seems to be due to the fact that there is some potential for further
improvement, whereby for the two smaller instances, both methods already op-
erate near the optimum.

5.2 Experiment 2: Does the Hybrid Approach Lead to Improved
Performance on Problem Instance Sets?

Pre-experimental Planning. Experiments show that 10 evaluations for each
problem of a set would severely slow down the EA. As computing less generations
seemed not sensibel, we resort to a ‘weighted optimistic average’ scheme that
uses only 2 evaluations per instance and averages over the best of these two. This
is necessary to avoid distorting effects of bad outliers. The average is weighted
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relative to the best fitness obtained on each problem during the computation of
the first generation; we do this to avoid scaling effects stemming from different
magnitudes of the instances’ objective values.

Task. We accept the adapted heuristic as dominant to the default heuristic, if
the resulting best CV instance leads at least to the same performance as the
latter for every single problem instance of the test set. Additionally, we require
the same for additional instances of the same type, which are used during the
EA optimization. Overall, we require that statistical testing reveals a significant
advantage on at least half of the tested instances per group.

Setup. We only consider the K and ClgM + problem sets. During the validation
phase of the best found CV instance, we add 2 previously unused K instances
and one ClgM + instance, respectively.

Results & Observations. The validation of the obtained best and average
CV instances revealed that training with a full set instead of a single problem
instance leads to clearly worse performance than reported in Experiment 1. The
average CV instance leads to worse solutions than the default heuristic for several
problem instances. The best CV instance however appears to be better than the
default heuristic in most cases.

Discussion. The Wilcoxon rank sum test confirmes significant performance dif-
ferences between the best obtained CV instance and the default heuristic, in
all cases except two. The two critical problem instances are ClgM+-4 with a
p-value of 0.036, and K400-3 with a p-value of 1. Whereas in the first case, the
attained advantage so small that it may stem from lucky sampling, we cannot
report any improvement at all for the second case. However, for all other problem
instances, we obtain significant differences with p < 10−5, i.e., the CV instance
leads to improved performance even on the instances that have not been used
for training. We can therefore state that learning a suitable CV instance for a
set of problem instances is successful, although the performance gain is not as
large as for single problem instances.

6 Experimental Analysis of Adaptability

This section investigates the changes induced to the heuristic by automatically
adapting it to the given instance or instance set. This corresponds to Aim 2
formulated in Section 2. The results documented in Section 5 clearly suggest
that for a given instance, certain CV settings may be especially useful. Hence,
for each instance we analyze the CV instances computed by the hybrid algorithm.
Figure 2 shows the results for some representive problem instances.

Before analyzing each single CV, we may observe that there are certain ev-
ident dependencies between the CVs. E.g., if a choose CV is set to 0 or 1, the
corresponding sort CV does not have any importance. Analogously, choose2 = 0
makes both order CVs insignificant. We see such an effect in Figure 2(a). We
know that it is difficult for our EA to handle nominal discrete CVs as they do
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(b) K400-4
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(c) P400-4
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(d) P400-0
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Fig. 2. CV instances for representive problem instances. The two solid lines identify
the CV instances for the best solution (solid circles) and for the solution which has a
value nearest to the average solution value (empty squares)

not provide any gradient information but simply have to be tried out. How-
ever, additional experiments show that their value in optimal CV instances is
in fact meaningful: by changing a sort CV in a given CV instance, the solution
quality usually decreases dramatically. For most instances where choose1 
= 1,
we observe that the optimal CV instances have sort1 set to either 1 or 3. We
can deduce that sorting C1 customers by their weight or by their efficiency is
superior to random sorting or sorting by distance.
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We can obtain much insight about the problem instance K400-3 by analyzing
its CVs: choose2 is very small, indicating that it is either not worthwhile to select
any C2 customer or it is not possible to connect them feasibly. The fact that the
default heuristic cannot find any feasible solution suggests the latter.

The balance CVs are probably the most interesting control values, as we had
no idea for a suitable setting, prior to the experiments. By interpreting their
settings, we obtain some insight into the involved construction heuristic steps.
These CVs specify how much the node profits should be considered for the short-
est path computations. Most suprisingly, it turns out that there is a significant
difference between balanceS and balanceT . While the former is near to 1 for most
problem instances, the latter usually is between 0 and 0.5. Although this fact
may be quite surprising at first sight, there is a natural interpretation. Remem-
ber that a large balance value will result in paths which contain more profitable
edges, but has the drawback that the edges incident to a profitable node become
cost-wise indistinguishable. The CV balanceT is used when computing shortest
paths in the whole graph. The density of the node customers on a single path
in the full graph is rather small, and choosing the perfect incident edges is not
as important as the benefit of attaching a profitable node. This is not the case
for balanceS : when using this CV we look for rather short and local connection
path, whereby it is more important to choose optimal edges.

The diagrams also show that the order CVs do not clearly influence the solu-
tion quality. Although some problem instances indeed exhibit certain tendencies,
these cannot be generalized. Therefore, we can set these CVs to default values, if
we have no knowledge about the specific problem instance we are dealing with.

7 Conclusions

We introduced a general CV hybridization scheme, which allows to utilize nu-
merical-based evolutionary algorithms for combinatorial problems. We showed
that our hybridization approach works well for our test application, and it there-
fore seems reasonable to suggest to try this approach for different combinatorial
problems and heuristics. We can also conclude that CV hybridization should
focus on real-valued CVs, as nominal discrete CVs pose difficulties in general.

We assume that an analytical optimization of the parameters for the EA, i.e.,
population size, offspring number, etc., might lead to even further improvements.
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